神经网络和高斯过程的优势和劣势是互补的。更好地了解他们的关系伴随着使每个方法从另一个方法中受益的承诺。在这项工作中,我们建立了神经网络的前进通行证与(深)稀疏高斯工艺模型之间的等价。我们开发的理论是基于解释激活函数作为跨域诱导功能,通过对激活函数和内核之间的相互作用进行严格分析。这导致模型可以被视为具有改善的不确定性预测或深度高斯过程的神经网络,其具有提高的预测精度。这些权利要求通过对回归和分类数据集进行实验结果来支持。
translated by 谷歌翻译
已知神经网络模型加强隐藏的数据偏差,使它们不可靠且难以解释。我们试图通过在功能空间中引入归纳偏差来构建“知道他们不知道的内容”。我们表明贝叶斯神经网络的定期激活功能在网络权重和平移 - 不变,静止的高斯过程前沿建立了连接之间的连接。此外,我们表明,通过覆盖三角波和周期性的Relu激活功能,该链接超出了正弦波(傅里叶)激活。在一系列实验中,我们表明定期激活功能获得了域内数据的可比性,并捕获对深度神经网络中的扰动输入的灵敏度进行域名检测。
translated by 谷歌翻译
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
隐式过程(IP)是高斯过程(GPS)的概括。 IP可能缺乏封闭形式的表达,但很容易采样。例子包括贝叶斯神经网络或神经抽样器。 IP可以用作功能的先验,从而产生具有良好预测不确定性估计值的灵活模型。基于IP的方法通常进行函数空间近似推断,从而克服了参数空间近似推断的一些困难。然而,所采用的近似值通常会限制最终模型的表现力,结果是\ emph {e.g。},在高斯预测分布中,这可能是限制的。我们在这里提出了IPS的多层概括,称为“深层隐式”过程(DVIP)。这种概括与GPS上的深GPS相似,但是由于使用IPs作为潜在函数的先前分布,因此更灵活。我们描述了用于训练DVIP的可扩展变异推理算法,并表明它的表现优于先前的基于IP的方法和深度GPS。我们通过广泛的回归和分类实验来支持这些主张。我们还在大型数据集上评估了DVIP,最多可达数百万个数据实例,以说明其良好的可扩展性和性能。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译
人们普遍认为,深网的成功在于他们学习数据功能的有意义表示的能力。然而,了解该功能学习何时以及如何提高性能仍然是一个挑战:例如,它对经过对图像进行分类的现代体系结构有益,而对于在相同数据上针对同一任务培训的完全连接的网络是有害的。在这里,我们提出了有关此难题的解释,表明特征学习可以比懒惰训练(通过随机特征内核或NTK)更糟糕,因为前者可以导致较少的神经表示。尽管已知稀疏性对于学习各向异性数据是必不可少的,但是当目标函数沿输入空间的某些方向恒定或平滑时,这是有害的。我们在两个设置中说明了这种现象:(i)在D维单元球体上的高斯随机函数的回归,以及(ii)图像基准数据集的分类。对于(i),我们通过训练点数来计算概括误差的缩放率,并证明即使输入空间的尺寸很大,不学习特征的方法也可以更好地推广。对于(ii),我们从经验上表明,学习特征确实会导致稀疏,从而减少图像预测因子的平滑表示。这一事实是可能导致性能恶化的,这与沿差异性的平滑度相关。
translated by 谷歌翻译
Deep Gaussian工艺(DGP)作为贝叶斯学习的先验模型直观地利用功能组成中的表达能力。 DGP还提供了不同的建模功能,但是推断很具有挑战性,因为潜在功能空间的边缘化是无法处理的。借助Bochner定理,具有平方指数内核的DGP可以看作是由随机特征层,正弦和余弦激活单元以及随机重量层组成的深度三角网络。在具有瓶颈的宽极限中,我们表明重量空间视图产生了相同的有效协方差函数,该函数先前在功能空间中获得。同样,在网络参数上改变先前的分布相当于使用不同的内核。因此,DGP可以转换为深瓶颈触发网络,可以通过该网络获得确切的最大后验估计。有趣的是,网络表示可以研究DGP的神经切线核,这也可能揭示了棘手的预测分布的平均值。从统计上讲,与浅网络不同,有限宽度的深网具有与极限内核的协方差,并且内部和外部宽度可能在功能学习中起不同的作用。存在数值模拟以支持我们的发现。
translated by 谷歌翻译
为了更好地了解大型神经网络的理论行为,有几项工程已经分析了网络宽度倾向于无穷大的情况。在该制度中,随机初始化的影响和训练神经网络的过程可以与高斯过程和神经切线内核等分析工具正式表达。在本文中,我们审查了在这种无限宽度神经网络中量化不确定性的方法,并将它们与贝叶斯推理框架中的高斯过程的关系进行比较。我们利用沿途使用几个等价结果,以获得预测不确定性的确切闭合性解决方案。
translated by 谷歌翻译
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the non-parametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost O(n) for n training points, and predictions cost O(1) per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.
translated by 谷歌翻译
高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量的间域间采样进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型性能,并发现在许多情况下,我们的方法可以提供比标准GP模型的改进。
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
学习由内核定义的积分运算符和数据分布的主要算法是许多机器学习问题的核心。基于nyStr {\“ O} m公式的传统非参数解决方案都遭受可伸缩性问题的困扰。最近的工作已采用参数方法,即训练神经网络以近似征本本征。很难实施。我们证明可以通过使用新的目标函数来解决这些问题它为多项式,径向基础,神经网络高斯过程和神经切线核的本征函数提供了准确的近似值。矩阵。代码可在\ url {https://github.com/thudzj/neuraleigenfunction}上获得。
translated by 谷歌翻译
现代深度神经网络(DNN)的成功基于其在多层转换投入以建立良好高级表示的能力。因此,了解这种表示学习过程至关重要。但是,我们不能使用涉及无限宽度限制的标准理论方法,因为它们消除了代表性学习。因此,我们开发了一个新的无限宽度限制,即表示的学习限制,该限制表现出表示形式的学习反映,但在有限宽度网络中,但同时仍然非常容易处理。例如,表示学习限制在深处的高斯过程中提供了恰好具有多种内核的多元高斯后期,包括所有各向同性(距离依赖)内核。我们得出一个优雅的目标,描述了每个网络层如何学习在输入和输出之间插值的表示形式。最后,我们使用此限制和目标来开发对内核方法的灵活,深刻的概括,我们称之为深内核机器(DKMS)。我们表明,可以使用受高斯过程文献中诱导点方法启发的方法将DKMS缩放到大数据集,并且我们表明DKMS表现出优于其他基于内核方法的性能。
translated by 谷歌翻译
我们提供了来自两个常见的低级内核近似产生的近似高斯过程(GP)回归的保证:基于随机傅里叶功能,并基于截断内核的Mercer扩展。特别地,我们将kullback-leibler在精确的gp和由一个上述低秩近似的一个与其内核中的一个引起的kullback-leibler发散相结合,以及它们的相应预测密度之间,并且我们还绑定了预测均值之间的误差使用近似GP使用精确的GP计算的矢量和预测协方差矩阵之间的载体。我们为模拟数据和标准基准提供了实验,以评估我们理论界的有效性。
translated by 谷歌翻译
神经切线内核(NTK)是分析神经网络及其泛化界限的训练动力学的强大工具。关于NTK的研究已致力于典型的神经网络体系结构,但对于Hadamard产品(NNS-HP)的神经网络不完整,例如StyleGAN和多项式神经网络。在这项工作中,我们为特殊类别的NNS-HP(即多项式神经网络)得出了有限宽度的NTK公式。我们证明了它们与关联的NTK与内核回归预测变量的等效性,该预测扩大了NTK的应用范围。根据我们的结果,我们阐明了针对外推和光谱偏置,PNN在标准神经网络上的分离。我们的两个关键见解是,与标准神经网络相比,PNN能够在外推方案中拟合更复杂的功能,并承认相应NTK的特征值衰减较慢。此外,我们的理论结果可以扩展到其他类型的NNS-HP,从而扩大了我们工作的范围。我们的经验结果验证了更广泛的NNS-HP类别的分离,这为对神经体系结构有了更深入的理解提供了良好的理由。
translated by 谷歌翻译
现代对高斯工艺的近似适合“高数据”,其成本在观测值的数量中缩放,但在``宽数据''上表现不佳,在输入功能的数量方面缩小了很差。也就是说,随着输入功能的数量的增长,良好的预测性能需要汇总变量及其相关成本的数量才能快速增长。我们引入了一个内核,该内核允许汇总变量的数量通过输入功能的数量成倍增长,但在观测数和输入功能的数量中仅需要线性成本。通过引入B \'ezier Buttress来实现此缩放,该块允许在无需计算矩阵倒置或决定因素的情况下进行近似推断。我们表明,我们的内核与高斯流程回归中一些最常用的内核具有非常相似的相似之处,并从经验上证明了内核可以扩展到高大和宽的数据集的能力。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
我们提供了来自两个常见的低级内核近似产生的近似高斯过程(GP)回归的保证:基于随机傅里叶功能,并基于截断内核的Mercer扩展。特别地,我们将kullback-leibler在精确的gp和由一个上述低秩近似的一个与其内核中的一个引起的kullback-leibler发散相结合,以及它们的相应预测密度之间,并且我们还绑定了预测均值之间的误差使用近似GP使用精确的GP计算的矢量和预测协方差矩阵之间的载体。我们为模拟数据和标准基准提供了实验,以评估我们理论界的有效性。
translated by 谷歌翻译