光的轨道角动量(OAM)是一种无限维度的光自由度,在经典和量子光学元件中都有多种应用。但是,为了充分利用OAM状态的潜力,需要在实验条件下表征生成状态的可靠检测平台。在这里,我们提出了一种方法,可以通过测量其产生的空间强度分布来重建输入OAM状态。为了消除Laguerre-Gauss模式的固有对称性引起的问题,我们每个状态仅在两个不同的基础上投射它,这是如何从收集的数据中唯一恢复输入状态的。我们的方法是基于通过主成分分析和线性回归降低维度的合并应用,因此在培训和测试阶段的计算成本较低。我们在真实的光子设置中展示了我们的方法,通过量子行动动力学生成最新的OAM状态。演示方法的高性能和多功能性使其成为表征量子信息协议中高维状态的理想工具。
translated by 谷歌翻译
量子光学器件中的自发参数下转换是实现具有空间光模式的高维QUITIES的宝贵资源。主要开放挑战之一是如何在SPDC过程中直接生成所需的Qudit状态。通过高级计算学习方法可以解决这个问题;然而,由于通过考虑所有互动效应的完全可分辨率算法对SPDC过程建模的困难,进展有限。在这里,我们克服了这些限制并引入了物理受约束和可微分的模型,验证了针对形状泵浦梁和结构晶体的实验结果,能够在过程中学习每个交互参数。我们避免了我们物理模型随机性质引起的任何限制,并整合了在SPDC Hamiltonian下的演变的动态方程。我们解决了设计非线性量子光学系统的逆问题,该系统实现了降低的光子对的所需量子状态。使用不同空间模式之间的二阶相关性或通过指定所需的密度矩阵来定义所需状态。通过学习非线性卷全息图以及不同的泵形状,我们成功地展示了如何生成最大纠缠的状态。此外,我们通过主动改变泵浦光束的轮廓来模拟产生的量子状态的全光相干控制。我们的工作对于高维量子密钥分布和量子信息处理协议等新颖设计有用。此外,我们的方法可以容易地应用于控制SPDC过程中的其他光度的其他光度,例如光谱和时间特性,甚至可以用于具有类似相互作用Hamiltonian的冷凝物系统。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
物理量的估计是大多数科学研究的核心,量子设备的使用有望增强其性能。在实际情况下,考虑到资源有限,贝叶斯自适应估计代表了有效分配所有可用资源的有效分配的强大方法,这是至关重要的。但是,该框架依赖于系统模型的精确知识,并以精细的校准检索,通常会在计算和实验要求上导致要求。在这里,我们介绍了一种基于模型和深度学习的方法,以有效地实施实现现实的贝叶斯量子计量任务,以实现所有相关挑战,而无需依靠对系统的任何APRIORI知识。为了克服这一需求,直接对实验数据进行了神经网络,以学习多参数贝叶斯更新。然后,通过通过训练并增强研究量子传感器的实验启发式的训练和增强实验启发式的增强学习算法提供的反馈,将系统设置为最佳工作点。值得注意的是,我们在实验上证明了比标准方法更高的估计性能实现,这证明了这两种黑盒算法在集成光子电路上的组合强度。这项工作是迈向完全基于人工智能的量子计量学的重要一步。
translated by 谷歌翻译
基于量子的通信中的当前技术将量子数据的新集成与经典数据进行混合处理。但是,这些技术的框架仅限于单个经典或量子任务,这限制了它们在近期应用中的灵活性。我们建议在需要经典和量子输入的计算任务中利用量子储存器处理器来利用量子动力学。该模拟处理器包括一个量子点网络,其中量子数据被入射到网络中,并且经典数据通过一个连贯的字段刺激了网络进行编码。我们执行量子断层扫描和经典通道非线性均衡的多任务应用。有趣的是,可以通过对经典数据的反馈控制以闭环方式进行断层扫描。因此,如果经典输入来自动力学系统,则将该系统嵌入封闭环中,即使访问对外部经典输入的访问被中断也可以处理混合处理。最后,我们证明准备量子去极化通道是一种用于量子数据处理的新型量子机学习技术。
translated by 谷歌翻译
激光诱导的击穿光谱是用于在环境压力下快速和直接的样品的快速和直接多元素映射的优选技术,而没有对靶元素的任何限制。然而,Libs映射数据具有两个特殊性:由于单次测量而导致的内在低信噪比,并且由于获得用于成像的高频频谱而导致的高维度。这使得所有变速器都变高:在这种情况下,消融光斑直径减小,以及烧结质量和发射信号,而给定表面的光谱数量增加。因此,从嘈杂和大型数据集中有效地提取物理化学信息是一个主要问题。几位作者引入多变量方法作为应对这些数据的手段,特别是主要成分分析。然而,已知PCA为数据集的一致重建呈现了理论限制,因此有利于Libs映射数据的有效解释的限制。在本文中,我们使用离散小波变换和基于内核的稀疏PCA来引入HyperPCA,用于高光谱图像的新分析工具,用于使用基于内核的稀疏PCA来降低噪声对数据的影响,并始终重建光谱信号,特别强调libs数据。首先使用模拟Libs映射数据集来说明该方法,以强调其具有高噪声和/或高度干扰的光谱的性能。提供了标准PCA和传统的单变量数据分析的比较。最后,它用于在两种情况下处理实际数据,清楚地说明所提出的算法的潜力。我们表明该方法在回收的信息的数量和质量上具有优势,从而提高了分析表面的物理化学表征。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
量化和验证准备量子状态的控制水平是构建量子器件中的中心挑战。量子状态的特点是实验测量,使用称为断层扫描的程序,这需要大量资源。此外,尚未制定与颞下处理的量子装置的断层扫描,其尚未制定与标准断层扫描的逐时处理。我们使用经常性机器学习框架开发了一种实用和近似的断层扫描方法,用于这种有趣情况。该方法基于具有量子态流称为量子储存器的系统之间的重复量子相互作用。来自储存器的测量数据连接到线性读数,以训练施加到输入流的量子通道之间的反复关系。我们展示了Quantum学习任务的算法,然后是Quantum短期内存容量的提议,以评估近术语量子器件的时间处理能力。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
由于其与线性主成分分析(PCA)相比,通过AutoEncoders的非线性主成分分析(NLPCA)通过自动化系统引起了动态系统社区的注意力。这些模型减少方法在应用于由于对称性的存在而展示具有全局不变样品的数据集时经历潜在空间的维度的增加。在这项研究中,我们在AutoEncoder中介绍了一种新颖的机器学习,它使用空间变压器网络和暹罗网络分别考虑连续和离散的对称。空间变压器网络发现连续平移或旋转的最佳变化,使得不变样本在周期性方向上对齐。同样,暹罗网络在离散移位和反射下不变的样本。因此,所提出的对称感知的AutoEncoder是不变的,到预定的输入变换,指示底层物理系统的动态。该嵌入可以与线性和非线性还原方法一起使用,我们将对称感知PCA(S-PCA)和对称感知NLPCA(S-NLPCA)采用。我们将建议的框架应用于3个流体流动问题:汉堡方程,流过一步漫射器的流程和kolmogorov流程的模拟,展示了表现出仅连续对称的情况的能力,只能离散对称或两者的组合。
translated by 谷歌翻译
深神经网络是量子状态表征的强大工具。现有网络通常是通过从需要表征的特定量子状态收集的实验数据来训练的。但是,除了用于培训的量子状态以外,是否可以离线训练神经网络并对量子状态进行预测?在这里,我们介绍了一个网络模型,该模型可以接受来自基准状态和测量结果的经典模拟数据训练,然后可以用来表征与基准集中与状态共享结构相似性的量子状态。在很少的量子物理指导下,该网络构建了自己的数据驱动的量子状态表示,然后使用它来预测尚未执行的量子测量结果的结果统计。网络产生的状态表示也可以用于超出预测结果统计数据的任务,包括量子状态的聚类和物质不同阶段的识别。我们的网络模型提供了一种灵活的方法,可以应用于在线学习方案,在该场景中,必须在实验数据可用后立即生成预测,以及学习者只能访问对量子硬件的加密描述的盲目学习场景。
translated by 谷歌翻译
机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
光学成像通常用于行业和学术界的科学和技术应用。在图像传感中,通过数字化图像的计算分析来执行一个测量,例如对象的位置。新兴的图像感应范例通过设计光学组件来执行不进行成像而是编码,从而打破了数据收集和分析之间的描述。通过将图像光学地编码为适合有效分析后的压缩,低维的潜在空间,这些图像传感器可以以更少的像素和更少的光子来工作,从而可以允许更高的直通量,较低的延迟操作。光学神经网络(ONNS)提供了一个平台,用于处理模拟,光学域中的数据。然而,基于ONN的传感器仅限于线性处理,但是非线性是深度的先决条件,而多层NNS在许多任务上的表现都大大优于浅色。在这里,我们使用商业图像增强器作为平行光电子,光学到光学非线性激活函数,实现用于图像传感的多层预处理器。我们证明,非线性ONN前处理器可以达到高达800:1的压缩率,同时仍然可以在几个代表性的计算机视觉任务中高精度,包括机器视觉基准测试,流程度图像分类以及对对象中对象的识别,场景。在所有情况下,我们都会发现ONN的非线性和深度使其能够胜过纯线性ONN编码器。尽管我们的实验专门用于ONN传感器的光线图像,但替代ONN平台应促进一系列ONN传感器。这些ONN传感器可能通过在空间,时间和/或光谱尺寸中预处处理的光学信息来超越常规传感器,并可能具有相干和量子质量,所有这些都在光学域中。
translated by 谷歌翻译
我们采用变化性AutoEncoders从单粒子Anderson杂质模型谱函数的数据集中提取物理洞察。培训AutoEncoders以查找低维,潜在的空间表示,其忠实地表征培训集的每个元素,通过重建误差测量。变形式自动化器,标准自动化器的概率概括,进一步条件促进了高度可解释的特征。在我们的研究中,我们发现学习的潜在变量与众所周知的众所周知,但非活动的参数强烈关联,这些参数表征了安德森杂质模型中的紧急行为。特别地,一种潜在的可变变量与粒子孔不对称相关,而另一个潜在的变量与杂质模型中动态产生的低能量尺度接近一对一的对应关系。使用符号回归,我们将此变量模拟了该变量作为已知的裸物理输入参数和“重新发现”的kondo温度的非扰动公式。我们开发的机器学习管道表明了一种通用方法,它开启了发现其他物理系统中的新领域知识的机会。
translated by 谷歌翻译
With the development of experimental quantum technology, quantum control has attracted increasing attention due to the realization of controllable artificial quantum systems. However, because quantum-mechanical systems are often too difficult to analytically deal with, heuristic strategies and numerical algorithms which search for proper control protocols are adopted, and, deep learning, especially deep reinforcement learning (RL), is a promising generic candidate solution for the control problems. Although there have been a few successful applications of deep RL to quantum control problems, most of the existing RL algorithms suffer from instabilities and unsatisfactory reproducibility, and require a large amount of fine-tuning and a large computational budget, both of which limit their applicability. To resolve the issue of instabilities, in this dissertation, we investigate the non-convergence issue of Q-learning. Then, we investigate the weakness of existing convergent approaches that have been proposed, and we develop a new convergent Q-learning algorithm, which we call the convergent deep Q network (C-DQN) algorithm, as an alternative to the conventional deep Q network (DQN) algorithm. We prove the convergence of C-DQN and apply it to the Atari 2600 benchmark. We show that when DQN fail, C-DQN still learns successfully. Then, we apply the algorithm to the measurement-feedback cooling problems of a quantum quartic oscillator and a trapped quantum rigid body. We establish the physical models and analyse their properties, and we show that although both C-DQN and DQN can learn to cool the systems, C-DQN tends to behave more stably, and when DQN suffers from instabilities, C-DQN can achieve a better performance. As the performance of DQN can have a large variance and lack consistency, C-DQN can be a better choice for researches on complicated control problems.
translated by 谷歌翻译