我们采用变化性AutoEncoders从单粒子Anderson杂质模型谱函数的数据集中提取物理洞察。培训AutoEncoders以查找低维,潜在的空间表示,其忠实地表征培训集的每个元素,通过重建误差测量。变形式自动化器,标准自动化器的概率概括,进一步条件促进了高度可解释的特征。在我们的研究中,我们发现学习的潜在变量与众所周知的众所周知,但非活动的参数强烈关联,这些参数表征了安德森杂质模型中的紧急行为。特别地,一种潜在的可变变量与粒子孔不对称相关,而另一个潜在的变量与杂质模型中动态产生的低能量尺度接近一对一的对应关系。使用符号回归,我们将此变量模拟了该变量作为已知的裸物理输入参数和“重新发现”的kondo温度的非扰动公式。我们开发的机器学习管道表明了一种通用方法,它开启了发现其他物理系统中的新领域知识的机会。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
三体系系统和逆平面潜力都对重整化群体限制循环的研究具有特殊意义。在这项工作中,我们追求探索性方法,并解决两体相互作用导致在低能量下三体系统中限制周期的问题,而不会对散射长度施加任何限制。为此,我们训练变形AutoEncoders的增强集合,不仅提供了严重的维度减少,而且还允许产生进一步的合成电位,这是一个重要的先决条件,以便有效地搜索低维潜在空间中的极限循环。我们通过将精英遗传算法应用于综合电位群体来实现,这最大限度地减少了特殊定义的极限循环损失。由此产生的最合适的人表明,逆平面电位是唯一的二体电位,最小化这一限制周期损失独立于高锰。
translated by 谷歌翻译
以无监督的方式从高维领域提取生成参数的能力是计算物理学中的非常理想尚未实现的目标。这项工作探讨了用于非线性尺寸降低的变形Autiachoders(VAES),其特定目的是{\ EM解散}的特定目标,以识别生成数据的独立物理参数。解除戒开的分解是可解释的,并且可以转移到包括生成建模,设计优化和概率减少阶级型建模的各种任务。这项工作的重大重点是使用VAE来表征解剖学,同时最小地修改经典的VAE损失功能(即证据下限)以保持高重建精度。损耗景观的特点是过度正常的局部最小值,其环绕所需的解决方案。我们通过在模型多孔流量问题中并列在模拟潜在分布和真正的生成因子中,说明了分解和纠缠符号之间的比较。展示了等级前瞻,促进了解除不诚实的表现的学习。在用旋转不变的前沿训练时,正则化损失不受潜在的旋转影响,从而学习非旋转不变的前锋有助于捕获生成因子的性质,改善解剖学。最后,表明通过标记少量样本($ O(1 \%)$)来实现半监督学习 - 导致可以一致地学习的准确脱屑潜在的潜在表示。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
我们研究了通过机器学习从欧几里得相关函数重建光谱函数的逆问题。我们提出了一个新型的神经网络SVAE,该网络基于变异自动编码器(VAE),可以自然应用于逆问题。 SVAE的突出特征是,作为损失函数中的先验信息包含了频谱函数的地面真实值的香农 - jaynes熵项,要最小化。我们使用高斯混合模型产生的一般光谱函数训练网络。作为一项测试,我们使用由一个由一个共振峰制成的四种不同类型的物理动机函数产生的相关器,连续项和使用非相关性QCD获得的扰动光谱函数。从模拟数据测试我们发现,在大多数情况下,SVAE与重建光谱函数质量的最大熵方法(MEM)相媲美,甚至在光谱函数具有尖峰的情况下且数据数量不足的情况下,SVAE与MEM的表现相当。相关器中的点。通过在淬火晶格QCD中获得的charmonium的时间相关函数应用于$ 128^3 \ times96 $ lattices和$ 128^3 \ times48 $ lattices,我们找到了$ 128^3 \ times96 $ lattices in 0.75 $ t_c $ on 0.75 $ t_c $ on 0.75 $ t_c $,我们发现,我们找到了,我们找到了,我们找到从SVAE和MEM提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ n_ \ tau $)的点数具有很大的依赖为了解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
基于自动编码器的降低订购建模(ROM)最近由于其捕获基本非线性特征的能力而引起了极大的关注。但是,两个关键缺点严重破坏了其对各种物理应用的可伸缩性:纠缠和无法解释的潜在变量(LVS)和潜在空间维度的眼罩确定。在这方面,本研究提出了仅使用$ \ beta $ - variational AutoCododer提取的可解释和信息密集型LV的物理感知ROM,在本文中被称为物理意识的LV。为了提取这些LV,它们的独立性和信息强度在二维跨音速基准问题中进行了定量检查。然后,对物理意识的LV的物理含义进行了彻底的研究,我们确认,使用适当的超参数$ \ beta $,它们实际上对应于训练数据集的生成因子,马赫数和攻击角度。据作者所知,我们的工作是第一个实际上确认$ \ beta $ variational自动编码器可以自动提取应用物理领域的物理生成因子。最后,将仅利用物理意识的LVS的物理学意识ROM与常规ROM进行了比较,并且成功验证了其有效性和效率。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
我们提出了一种自我监督的方法,以解除高维数据变化的因素,该因素不依赖于基本变化概况的先验知识(例如,没有关于要提取单个潜在变量的数量或分布的假设)。在我们称为nashae的方法中,通过促进从所有其他编码元素中恢复的每个编码元素和恢复的元素的信息之间的差异,在标准自动编码器(AE)的低维潜在空间中完成了高维的特征分离。通过将其作为AE和回归网络合奏之间的Minmax游戏来有效地促进了分解,从而估算了一个元素,该元素以对所有其他元素的观察为条件。我们将我们的方法与使用现有的分离指标进行定量比较。此外,我们表明Nashae具有提高的可靠性和增加的能力来捕获学习潜在表示中的显着数据特征。
translated by 谷歌翻译
基于似然或显式的深层生成模型使用神经网络来构建灵活的高维密度。该公式直接与歧管假设相矛盾,该假设指出,观察到的数据位于嵌入高维环境空间中的低维歧管上。在本文中,我们研究了在这种维度不匹配的情况下,最大可能的训练的病理。我们正式证明,在学习歧管本身而不是分布的情况下,可以实现堕落的优点,而我们称之为多种歧视的现象过于拟合。我们提出了一类两步程序,该过程包括降低降低步骤,然后进行最大样子密度估计,并证明它们在非参数方面恢复了数据生成分布,从而避免了多种歧视。我们还表明,这些过程能够对隐式模型(例如生成对抗网络)学到的流形进行密度估计,从而解决了这些模型的主要缺点。最近提出的几种方法是我们两步程序的实例。因此,我们统一,扩展和理论上证明了一大批模型。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
神经网络经常将许多无关的概念包装到一个神经元中 - 一种令人困惑的现象被称为“多疾病”,这使解释性更具挑战性。本文提供了一个玩具模型,可以完全理解多义,这是由于模型在“叠加”中存储其他稀疏特征的结果。我们证明了相变的存在,与均匀多型的几何形状的令人惊讶的联系以及与对抗性例子联系的证据。我们还讨论了对机械解释性的潜在影响。
translated by 谷歌翻译
机器学习方法的最新进展以及扫描探针显微镜(SPMS)的可编程接口的新兴可用性使自动化和自动显微镜在科学界的关注方面推向了最前沿。但是,启用自动显微镜需要开发特定于任务的机器学习方法,了解物理发现与机器学习之间的相互作用以及完全定义的发现工作流程。反过来,这需要平衡领域科学家的身体直觉和先验知识与定义实验目标和机器学习算法的奖励,这些算法可以将它们转化为特定的实验协议。在这里,我们讨论了贝叶斯活跃学习的基本原理,并说明了其对SPM的应用。我们从高斯过程作为一种简单的数据驱动方法和对物理模型的贝叶斯推断作为基于物理功能的扩展的贝叶斯推断,再到更复杂的深内核学习方法,结构化的高斯过程和假设学习。这些框架允许使用先验数据,在光谱数据中编码的特定功能以及在实验过程中表现出的物理定律的探索。讨论的框架可以普遍应用于结合成像和光谱,SPM方法,纳米识别,电子显微镜和光谱法以及化学成像方法的所有技术,并且对破坏性或不可逆测量的影响特别影响。
translated by 谷歌翻译