受数字孪生系统的启发,开发了一个新型的实时数字双框架,以增强机器人对地形条件的感知。基于相同的物理模型和运动控制,这项工作利用了与真实机器人同步的模拟数字双重同步,以捕获和提取两个系统之间的差异信息,这两个系统提供了多个物理数量的高维线索,以表示代表差异建模和现实世界。柔软的,非刚性的地形会导致腿部运动中常见的失败,因此,视觉感知完全不足以估计地形的这种物理特性。我们使用了数字双重来开发可折叠性的估计,这通过动态步行过程中的物理互动来解决此问题。真实机器人及其数字双重双重测量之间的感觉测量的差异用作用于地形可折叠性分析的基于学习的算法的输入。尽管仅在模拟中受过培训,但学习的模型可以在模拟和现实世界中成功执行可折叠性估计。我们对结果的评估表明,对不同方案和数字双重的优势的概括,可在地面条件下可靠地检测到细微差别。
translated by 谷歌翻译
这项研究受到人类行为的启发,提议使用探测策略,并将其整合到遍布性分析框架中,以解决未知的粗糙地形上的安全导航。我们的框架将可折叠信息整合到我们现有的遍历性分析中,因为仅视力和几何信息可能会被不可预测的非刚性地形(例如柔软的土壤,灌木丛或水坑)误导。通过新的遍历性分析框架,我们的机器人对不可预测的地形进行了更全面的评估,这对于其在室外环境中的安全至关重要。该管道首先使用RGB-D摄像头确定地形的几何和语义性能,并在可疑地形上探测位置。使用力传感器对这些区域进行探测,以确定机器人在其上面时崩溃的风险。该风险被称为可折叠度度量,该指标估计了不可预测的区域的地面可折叠性。此后,将可折叠性度量以及几何和语义空间数据结合在一起,并分析以产生全局和局部穿术网格图。这些遍历性网格地图告诉机器人是否可以安全地跨越地图的不同区域。然后使用网格图来生成机器人的最佳路径,以安全地导航其目标。在模拟和现实世界实验中,我们的方法已在四足动物的机器人上成功验证。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
在本文中,我们提出了一个深度学习框架,该框架为人形机器人步行步态中的腿部接触率检测提供了统一的方法。我们的配方实现了准确,稳健地估计每条腿的接触状态概率(即稳定或滑动/无接触)。所提出的框架采用了仅本体感知感应,尽管它依赖于模拟的基础真相接触数据进行分类过程,但我们证明了它在不同的摩擦表面和不同的腿部机器人平台上概括,同时也很容易地从模拟转移到模拟转移到实践。该框架是通过使用地面真实接触数据在模拟中进行定量和定性评估的,并与ATLA,NAO和TALOS类人类机器人的现状与ART方法形成对比。此外,用真实的talos人类生物生物估计得出了其功效。为了加强进一步的研究努力,我们的实施是作为开源的ROS/Python软件包,即创建的腿部接触检测(LCD)。
translated by 谷歌翻译
惯性测量单元(IMU)在机器人研究中无处不在。它为机器人提供了姿势信息,以实现平衡和导航。但是,人类和动物可以在没有精确的方向或位置值的情况下感知其身体在环境中的运动。这种互动固有地涉及感知和动作之间的快速反馈回路。这项工作提出了一种端到端方法,该方法使用高维视觉观察和动作命令来训练视觉自模型进行腿部运动。视觉自模型学习机器人身体运动与地面纹理之间的空间关系从图像序列变化。我们证明机器人可以利用视觉自模型来实现机器人在训练过程中看不见的现实环境中的各种运动任务。通过我们提出的方法,机器人可以在没有IMU的情况下或在没有GPS或弱地磁场的环境中进行运动,例如该市的室内和Urban Canyons。
translated by 谷歌翻译
腿部运动的最新进展使四足动物在具有挑战性的地形上行走。但是,两足机器人本质上更加不稳定,因此很难为其设计步行控制器。在这项工作中,我们利用了对机车控制的快速适应的最新进展,并将其扩展到双皮亚机器人。与现有作品类似,我们从基本策略开始,该策略在将适应模块的输入中作为输入作为输入。该外部媒介包含有关环境的信息,并使步行控制器能够快速在线适应。但是,外部估计器可能是不完善的,这可能导致基本政策的性能不佳,这预计是一个完美的估计器。在本文中,我们提出了A-RMA(Adapting RMA),该A-RMA(适应RMA)还通过使用无模型RL对其进行了鉴定,从而适应了不完美的外部外部估计器的基本策略。我们证明,A-RMA在仿真中胜过许多基于RL的基线控制器和基于模型的控制器,并显示了单个A-RMA策略的零拍摄部署,以使双皮德机器人Cassie能够在各种各样的现实世界中的不同场景超出了培训期间所见。 https://ashish-kmr.github.io/a-rma/的视频和结果
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
深度强化学习(Deep RL)已成为开发腿部机器人控制器的有效工具。但是,香草深RL通常需要大量的训练样本,并且对于实现强大的行为不可行。取而代之的是,研究人员通过合并人类专家的知识来调查一种新颖的政策架构,例如调节轨迹发生器(PMTG)的政策。该体系结构通过组合参数轨迹生成器(TG)和反馈策略网络来构建一个经常性的控制循环,以实现更强大的行为。为了利用人类专家的知识,但消除了耗时的互动教学,研究人员调查了一种新颖的架构,策略调节轨迹发生器(PMTG),该建筑通过结合参数轨迹生成器(TG)和反馈策略来构建经常性的控制循环网络使用直观的先验知识来实现​​更强大的行为。在这项工作中,我们建议通过使用接触感知的有限状态机器(FSM)代替TG来调整有限状态机(PM-FSM),从而为每条腿提供更灵活的控制。与TGS相比,FSM在每个腿部运动生成器上提供高级管理,并实现灵活的状态安排,这使得学习的行为不那么容易受到看不见的扰动或具有挑战性的地形。本发明为政策提供了明确的联系事件的概念,以协商意外的扰动。我们证明,在模拟机器人和真实的机器人上,所提出的架构可以在各种情况下(例如具有挑战性的地形或外部扰动)实现更强大的行为。补充视频可以在以下网址找到:https://youtu.be/78cbomqtkjq。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
如今,腿部四足机器人的设计和开发是科学研究的一个非常活跃的领域。实际上,由于与其他移动机器人相比,腿部机器人能够适应严峻的地形和各种环境条件,因此变得流行。随着对腿部机器人实验的需求较高,更多的研究和工程师需要一种负担得起,快速的运动算法开发方式。在本文中,我们提出了一个新的开源四倍的机器人超狗平台,该平台具有12个RC伺服电机,NVIDIA JETSON NANO COMPUTER和STM32F4 DISCOVERY板。 HyperDog是四倍的机器人软件开发的开源平台,该平台基于机器人操作系统2(ROS2)和Micro-Ros。此外,HyperDog是完全由3D印刷零件和碳纤维建造的四倍的机器人狗,它使机器人的重量轻和强度良好。这项工作的想法是证明机器人开发的一种负担得起且可定制的方式,并为研究和工程师提供了腿部机器人平台,在该平台中可以在模拟和真实环境中测试和验证不同的算法。具有代码的开发项目可在GitHub(https://github.com/ndhana94/hyperdog_ros2)上获得。
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译
自适应控制可以解决控制系统中的模型不确定性。但是,它是专为跟踪控制而设计的。近期机器人控制的最新进步表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们提出了一种用于腿机器人的新型自适应力控制框架。我们以我们提出的方法介绍了一种新的架构,将自适应控制纳入二次编程(QP)力控制。由于我们的方法是基于力控制,它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软撞击的鲁棒性。我们的方法在模拟和硬件实验中成功验证。虽然基线QP控制在具有小负载的身体跟踪误差中显示出显着的降级,但我们所提出的基于自适应力的控制可以使12千克Unitree A1机器人能够在粗糙的地形上行走,同时承载最多6次kg(50%的机器人重量)。当站在四条腿时,我们所提出的自适应控制甚至可以允许机器人在机器人高度中携带多达11kg的负载(机器人重量的92%),并且在机器人高度中具有小于5cm的跟踪误差。
translated by 谷歌翻译
Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
在这项工作中,我们提出了一种方法,用于生成降低的模型参考轨迹,用于用于双皮亚机器人的高度动态操作的一般类别,用于SIM卡之间,用于SIM卡至现实的增强学习。我们的方法是利用单个刚体模型(SRBM)来优化轨迹的库库,以用作学习政策的奖励函数中的专家参考。该方法将模型的动态旋转和翻译行为转化为全阶机器人模型,并成功将其传输到真实硬件。 SRBM的简单性允许快速迭代和行为改进,而基于学习的控制器的鲁棒性则可以将高度动态的动作传输到硬件。 %在这项工作中,我们介绍了一套可转移性约束,将SRBM动态修改为实际的两足机器人硬件,这是我们为动态步进,转动操作和跳跃创建最佳轨迹的框架。在这项工作中,我们介绍了一套可转移性约束,将SRBM动力学修改为实际的双皮亚机器人硬件,我们为各种高度动态的操作创建最佳轨迹的框架,以及我们整合参考轨迹的高速强化跑步轨迹的方法学习政策。我们验证了在两足机器人Cassie上的方法,我们成功地展示了高达3.0 m/s的高度动态接地步态。
translated by 谷歌翻译
这项工作开发了一种基于学习的联系人估算,用于绕过物理传感器的需要,并将多模态原宿感官数据作为输入绕过。与基于视觉的状态估计不同,Benrioceptive状态估算变无关,对感知性地降级的情况(如黑暗或有雾的场景)不可知。虽然一些机器人配备了专用物理传感器来检测状态估计的必要接触数据,但有些机器人没有专用的接触传感器,并且添加这种传感器是非微小的,而不重新设计硬件。训练有素的网络可以估计不同地形上的联系事件。该实验表明,与最先进的视觉流动系统相比,接触辅助不变的延长卡尔曼滤光器可以产生精确的内径轨迹,从而实现鲁棒的丙基型测距仪。
translated by 谷歌翻译