在本文中,我们提出了一个深度学习框架,该框架为人形机器人步行步态中的腿部接触率检测提供了统一的方法。我们的配方实现了准确,稳健地估计每条腿的接触状态概率(即稳定或滑动/无接触)。所提出的框架采用了仅本体感知感应,尽管它依赖于模拟的基础真相接触数据进行分类过程,但我们证明了它在不同的摩擦表面和不同的腿部机器人平台上概括,同时也很容易地从模拟转移到模拟转移到实践。该框架是通过使用地面真实接触数据在模拟中进行定量和定性评估的,并与ATLA,NAO和TALOS类人类机器人的现状与ART方法形成对比。此外,用真实的talos人类生物生物估计得出了其功效。为了加强进一步的研究努力,我们的实施是作为开源的ROS/Python软件包,即创建的腿部接触检测(LCD)。
translated by 谷歌翻译
这项工作开发了一种基于学习的联系人估算,用于绕过物理传感器的需要,并将多模态原宿感官数据作为输入绕过。与基于视觉的状态估计不同,Benrioceptive状态估算变无关,对感知性地降级的情况(如黑暗或有雾的场景)不可知。虽然一些机器人配备了专用物理传感器来检测状态估计的必要接触数据,但有些机器人没有专用的接触传感器,并且添加这种传感器是非微小的,而不重新设计硬件。训练有素的网络可以估计不同地形上的联系事件。该实验表明,与最先进的视觉流动系统相比,接触辅助不变的延长卡尔曼滤光器可以产生精确的内径轨迹,从而实现鲁棒的丙基型测距仪。
translated by 谷歌翻译
受数字孪生系统的启发,开发了一个新型的实时数字双框架,以增强机器人对地形条件的感知。基于相同的物理模型和运动控制,这项工作利用了与真实机器人同步的模拟数字双重同步,以捕获和提取两个系统之间的差异信息,这两个系统提供了多个物理数量的高维线索,以表示代表差异建模和现实世界。柔软的,非刚性的地形会导致腿部运动中常见的失败,因此,视觉感知完全不足以估计地形的这种物理特性。我们使用了数字双重来开发可折叠性的估计,这通过动态步行过程中的物理互动来解决此问题。真实机器人及其数字双重双重测量之间的感觉测量的差异用作用于地形可折叠性分析的基于学习的算法的输入。尽管仅在模拟中受过培训,但学习的模型可以在模拟和现实世界中成功执行可折叠性估计。我们对结果的评估表明,对不同方案和数字双重的优势的概括,可在地面条件下可靠地检测到细微差别。
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
腿部机器人运动是一项艰巨的任务,这是由于无数的子问题,例如脚接触的混合动力学以及所需步态对地形的影响。对浮动基础和脚关节的准确和高效的状态估计可以通过向机器人控制器提供反馈信息来帮助减轻这些问题的许多问题。当前的状态估计方法高度依赖于视觉和惯性测量的结合,以提供实时估计,从而在感知上较差的环境中残障。在这项工作中,我们表明,通过通过因子图公式利用机器人的运动学链模型,我们可以使用主要的特性惯性数据对基础和腿关节进行状态估计。我们使用基于因子图形的框架中的预先集成IMU测量,正向运动计算和接触检测的组合进行状态估计,从而使我们的状态估计值受到机器人模型的约束。模拟和硬件上的实验结果表明,我们的方法平均超过当前的本体感受状态估计方法27%,同时可以推广到各种腿部机器人平台。我们在各种轨迹上定量和定性地展示了我们的结果。
translated by 谷歌翻译
人类能够以显着的敏捷性和轻松的方式谈判计划和计划外行为。本文的目的是系统地研究这种人类行为向两足步行机器人的翻译,即使形态本质上不同。具体而言,我们从计划和计划外的下台开始的人类数据开始。我们从人类减少阶层建模的角度分析了这些数据,编码质量(COM)运动学和接触力的中心,这使这些行为将这些行为转化为双皮德机器人的相应降低阶模型。我们通过基于非线性优化的控制器将所得的行为嵌入了两足机器人的全阶动力学中。最终结果是在不足的步行机器人上模拟中计划和计划外的下台。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
最先进的腿机器人可以在其驱动系统的输出处测量扭矩,或者具有透明的驱动系统,从而能够从电动电流计算关节扭矩。无论哪种情况,这种传感器模式很少用于状态估计。在本文中,我们建议使用关节扭矩测量值来估计腿部机器人的质心状态。为此,我们将腿部机器人的全身动力学投射到接触约束的无空间中,从而使动力学的表达独立于接触力。使用受约束的动力学和质心动量矩阵,我们能够直接将关节扭矩和质心态动力学联系起来。使用结果模型作为扩展卡尔曼滤波器(EKF)的过程模型,我们将扭矩测量融合在质心状态估计问题中。通过在具有不同步态的四倍机器人上进行的实际实验,我们证明,与直接计算相比,基于扭矩的EKF的估计质心状态大大改善了这些数量的回收率。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
自适应控制可以解决控制系统中的模型不确定性。但是,它是专为跟踪控制而设计的。近期机器人控制的最新进步表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们提出了一种用于腿机器人的新型自适应力控制框架。我们以我们提出的方法介绍了一种新的架构,将自适应控制纳入二次编程(QP)力控制。由于我们的方法是基于力控制,它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软撞击的鲁棒性。我们的方法在模拟和硬件实验中成功验证。虽然基线QP控制在具有小负载的身体跟踪误差中显示出显着的降级,但我们所提出的基于自适应力的控制可以使12千克Unitree A1机器人能够在粗糙的地形上行走,同时承载最多6次kg(50%的机器人重量)。当站在四条腿时,我们所提出的自适应控制甚至可以允许机器人在机器人高度中携带多达11kg的负载(机器人重量的92%),并且在机器人高度中具有小于5cm的跟踪误差。
translated by 谷歌翻译
跳跃可能是克服小地形差距或障碍的有效运动方法。在本文中,我们提出了两种不同的方法,可以用类人形机器人进行跳跃。具体而言,从预定义的COM轨迹开始,我们开发了速度控制器的理论和基于优化技术评估关节输入的优化技术的扭矩控制器。在模拟和类人形机器人ICUB中,对控制器进行了测试。在模拟中,机器人能够使用两个控制器跳跃,而实际系统仅使用速度控制器跳跃。结果突出了控制质心动量的重要性,他们表明联合性能,即腿部和躯干关节的最大功率,以及低水平的控制性能是至关重要的,以实现可接受的结果。
translated by 谷歌翻译
我们为腿部机器人提供了一个开源视觉惯性训练率(VILO)状态估计解决方案Cerberus,该机器人使用一组标准传感器(包括立体声摄像机,IMU,联合编码器,,imu,联合编码器)实时实时估算各个地形的位置和接触传感器。除了估计机器人状态外,我们还执行在线运动学参数校准并接触离群值拒绝以大大减少位置漂移。在各种室内和室外环境中进行的硬件实验验证了Cerberus中的运动学参数可以将估计的漂移降低到长距离高速运动中的1%以下。我们的漂移结果比文献中报道的相同的一组传感器组比任何其他状态估计方法都要好。此外,即使机器人经历了巨大的影响和摄像头遮挡,我们的状态估计器也表现良好。状态估计器的实现以及用于计算我们结果的数据集,可在https://github.com/shuoyangrobotics/cerberus上获得。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
为了改善对步态辅助的可穿戴机器人技术的控制,我们提出了一种基于包括时间历史信息的人工神经网络的连续运动模式识别以及步态阶段和楼梯坡度估算的方法。输入功能仅由处理变量组成,这些变量可以通过单个柄安装的惯性测量单元进行测量。我们引入了可穿戴设备,以获取现实世界环境测试数据,以证明该方法的性能和鲁棒性。确定平均绝对误差(步态相,楼梯斜率)和准确性(运动模式),以进行稳定的步行和稳定的楼梯移动。使用来自不同传感器硬件,传感器固定,移动环境和受试者的测试数据评估鲁棒性。步态阶段稳定步态测试数据的平均绝对误差为2.0-3.5%,对于楼梯斜率估计,步态阶段的平均绝对误差为3.3-3.8 {\ deg}。在测试数据上使用时间历史记录信息的利用在98.51%和99.67%之间的测试数据上正确的运动模式的准确性。结果表明,在稳定步态期间,持续预测步态阶段,楼梯斜率和运动模式的高性能和鲁棒性。如假设的那样,时间历史信息改善了运动模式识别。但是,尽管步射阶段在运动模式之间未经训练的过渡方面表现良好,但我们的定性分析表明,将过渡数据纳入神经网络的训练以改善斜率和运动模式的预测可能是有益的。我们的结果表明,人工神经网络可用于对可穿戴下肢机器人技术的高水平控制。
translated by 谷歌翻译
在本文中,提出了一种新的视觉惯性内径(VIO)的步行 - vio,采用步行运动 - 自适应腿运动约束,其提出了用身体运动改变为四足机器人的定位。四足机器人主要使用VIO,因为它们需要快速定位进行控制和路径规划。但是,由于四足功能机器主要用于室外,因此从天空或地面提取的外来特征导致跟踪故障。此外,Quadruped Robots的行走运动导致摆动,这降低了相机和惯性测量单元(IMU)引起的定位精度。为了克服这些限制,许多研究人员使用VIO与腿运动限制。然而,由于四足机器人的行走运动根据控制器,步态,四足机器人的速度等,因此在添加腿运动限制的过程中应该考虑这些因素。我们提出了通过调整腿运动约束因素来使用的VIO,无论步行运动如何。为了评估Walk-VIO,我们创建和发布二章机器人的数据集,这些机器人在仿真环境中以各种类型的行走运动移动。此外,我们通过与当前最先进的算法进行比较验证了WAWN-VIO的有效性。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译