最先进的腿机器人可以在其驱动系统的输出处测量扭矩,或者具有透明的驱动系统,从而能够从电动电流计算关节扭矩。无论哪种情况,这种传感器模式很少用于状态估计。在本文中,我们建议使用关节扭矩测量值来估计腿部机器人的质心状态。为此,我们将腿部机器人的全身动力学投射到接触约束的无空间中,从而使动力学的表达独立于接触力。使用受约束的动力学和质心动量矩阵,我们能够直接将关节扭矩和质心态动力学联系起来。使用结果模型作为扩展卡尔曼滤波器(EKF)的过程模型,我们将扭矩测量融合在质心状态估计问题中。通过在具有不同步态的四倍机器人上进行的实际实验,我们证明,与直接计算相比,基于扭矩的EKF的估计质心状态大大改善了这些数量的回收率。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
由于基本的非线性,混合和本质上不稳定的动力学,需要通过有限的接触力来稳定,因此为腿部机器人生成强大的轨迹仍然是一项具有挑战性的任务。此外,由于与环境和模型不匹配的未建模接触相互作用引起的干扰会阻碍计划轨迹的质量,从而导致不安全的运动。在这项工作中,我们建议使用随机轨迹优化来生成健壮的质心动量轨迹,以说明模型动力学和触点位置上的参数不确定性上的加法不确定性。通过强大的质心和全身轨迹优化之间的交替,我们生成了健壮的动量轨迹,同时与全身动力学保持一致。我们在四倍的机器人上执行了一组大量的模拟,这表明我们的随机轨迹优化问题减少了不同步态的脚部滑倒量,同时在确定性计划上实现了更好的性能。
translated by 谷歌翻译
为了安全地在现实世界中部署腿部机器人,有必要为他们提供可靠地检测出意外接触并准确估算相应接触力的能力。在本文中,我们提出了针对四足动物的碰撞检测和识别管道。我们首先引入了一种基于带通滤波的碰撞时间跨度的方法,并证明此信息是获得准确的碰撞力估计值的关键。然后,我们通过补偿模型不准确性,未建模的载荷以及作用在机器人上的任何其他潜在的准静态干扰来源来提高所识别力量幅度的准确性。在各种情况下,我们通过广泛的硬件实验来验证我们的框架,包括小跑和机器人上的其他未建模负载。
translated by 谷歌翻译
跳跃可能是克服小地形差距或障碍的有效运动方法。在本文中,我们提出了两种不同的方法,可以用类人形机器人进行跳跃。具体而言,从预定义的COM轨迹开始,我们开发了速度控制器的理论和基于优化技术评估关节输入的优化技术的扭矩控制器。在模拟和类人形机器人ICUB中,对控制器进行了测试。在模拟中,机器人能够使用两个控制器跳跃,而实际系统仅使用速度控制器跳跃。结果突出了控制质心动量的重要性,他们表明联合性能,即腿部和躯干关节的最大功率,以及低水平的控制性能是至关重要的,以实现可接受的结果。
translated by 谷歌翻译
本报告描述了一种模拟主动控制系统的多体触点的方法。在这项工作中,我们专注于踢圆球的二维双面机器人的控制和接触仿真。
translated by 谷歌翻译
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的质心动力学之间进行交替,以实现动力学共识。我们使用等椭圆形参数化的新型动量惰性质地优化能够通过``惯性塑造''来产生高度的杂技运动。我们的全身优化方法可显着改善基于标准DDP的方法的质量从质心层中利用反馈。对于在线控制,我们通过完整的质心动力学的线性转换开发了一种新颖的凸模型预测控制方案。我们的控制器可以在单个优化中有效地对接触力和关节加速度有效地优化,从而实现更直接的加速度,从而实现更直接的优化与现有四倍体MPC控制器相比,跟踪动量丰富的动作。我们在四个不同的动态操作中证明了我们的轨迹计划者的能力和通用性。然后,我们在MIT MINI Cheetah平台上展示了​​一个硬件实验,以证明整个计划的性能和整个计划的性能和性能扭曲的控制管道跳动。
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
我们为腿部机器人提供了一个开源视觉惯性训练率(VILO)状态估计解决方案Cerberus,该机器人使用一组标准传感器(包括立体声摄像机,IMU,联合编码器,,imu,联合编码器)实时实时估算各个地形的位置和接触传感器。除了估计机器人状态外,我们还执行在线运动学参数校准并接触离群值拒绝以大大减少位置漂移。在各种室内和室外环境中进行的硬件实验验证了Cerberus中的运动学参数可以将估计的漂移降低到长距离高速运动中的1%以下。我们的漂移结果比文献中报道的相同的一组传感器组比任何其他状态估计方法都要好。此外,即使机器人经历了巨大的影响和摄像头遮挡,我们的状态估计器也表现良好。状态估计器的实现以及用于计算我们结果的数据集,可在https://github.com/shuoyangrobotics/cerberus上获得。
translated by 谷歌翻译
In unstructured environments, robots run the risk of unexpected collisions. How well they react to these events is determined by how transparent they are to collisions. Transparency is affected by structural properties as well as sensing and control architectures. In this paper, we propose the collision reflex metric as a way to formally quantify transparency. It is defined as the total impulse transferred in collision, which determines the collision mitigation capabilities of a closed-loop robotic system taking into account structure, sensing, and control. We analyze the effect of motor scaling, stiffness, and configuration on the collision reflex of a system using an analytical model. Physical experiments using the move-until-touch behavior are conducted to compare the collision reflex of direct-drive and quasi-direct-drive actuators and robotic hands (Schunk WSG-50 and Dexterous DDHand.) For transparent systems, we see a counter-intuitive trend: the impulse may be lower at higher pre-impact velocities.
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
自由飞行机器人的应用范围从娱乐目的到航空航天应用。用于这种系统的控制算法需要基于传感器反馈准确地估计它们的状态。本文的目的是设计和验证一个轻型状态估计算法,用于自由飞行开放运动链,估计其质量中心及其姿势的状态。该研究而不是利用非线性动力学模型,提出了两个卡尔曼滤波器(KF)的级联结构,其依赖于自由落体多体系的弹道运动以及来自惯性测量单元(IMU)和编码器的反馈。在模拟中验证了多种算法,以模拟使用Simulink模拟实际情况。改变了几个不确定的物理参数,结果表明,所提出的估计器在跟踪性能和计算时间方面优于EKF和UKF。
translated by 谷歌翻译
在本文中,我们提出了一个深度学习框架,该框架为人形机器人步行步态中的腿部接触率检测提供了统一的方法。我们的配方实现了准确,稳健地估计每条腿的接触状态概率(即稳定或滑动/无接触)。所提出的框架采用了仅本体感知感应,尽管它依赖于模拟的基础真相接触数据进行分类过程,但我们证明了它在不同的摩擦表面和不同的腿部机器人平台上概括,同时也很容易地从模拟转移到模拟转移到实践。该框架是通过使用地面真实接触数据在模拟中进行定量和定性评估的,并与ATLA,NAO和TALOS类人类机器人的现状与ART方法形成对比。此外,用真实的talos人类生物生物估计得出了其功效。为了加强进一步的研究努力,我们的实施是作为开源的ROS/Python软件包,即创建的腿部接触检测(LCD)。
translated by 谷歌翻译
具有长飞行阶段的高度敏捷杂技动作需要完美的时机,高精度,以及整个身体运动的协调。为了解决这些挑战,本文提出了一个统一的时序和轨迹优化框架,可用于执行激进的3D跳跃的腿机器人。在我们的方法中,我们首先利用了有效的优化框架,使用简化的刚体动力学来解决机器人身体的接触时间和参考轨迹。然后使用该模块的解决方案基于机器人的全部非线性动力学制定全身轨迹优化。这种组合允许我们有效地优化接触定时,同时保证可以在硬件中实现的跳跃轨迹的准确性。我们在A1机器人模型上验证了所提出的框架,以获得各种3D跳跃任务,如双后跳和双桶分别从2M和0.8米的高海拔滚动。对于不同的3D跳跃动作,还成功地进行了实验验证,例如来自盒子或对角线跳转的桶卷。
translated by 谷歌翻译
腿部机器人运动是一项艰巨的任务,这是由于无数的子问题,例如脚接触的混合动力学以及所需步态对地形的影响。对浮动基础和脚关节的准确和高效的状态估计可以通过向机器人控制器提供反馈信息来帮助减轻这些问题的许多问题。当前的状态估计方法高度依赖于视觉和惯性测量的结合,以提供实时估计,从而在感知上较差的环境中残障。在这项工作中,我们表明,通过通过因子图公式利用机器人的运动学链模型,我们可以使用主要的特性惯性数据对基础和腿关节进行状态估计。我们使用基于因子图形的框架中的预先集成IMU测量,正向运动计算和接触检测的组合进行状态估计,从而使我们的状态估计值受到机器人模型的约束。模拟和硬件上的实验结果表明,我们的方法平均超过当前的本体感受状态估计方法27%,同时可以推广到各种腿部机器人平台。我们在各种轨迹上定量和定性地展示了我们的结果。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译
模型预测控制(MPC)方案已经证明了它们在控制高自由度(DOF)复杂机器人系统方面的效率。但是,它们的计算成本很高,更新速度约为数十万。这种相对较慢的更新速率阻碍了这种系统稳定的触觉远程操作的可能性,因为缓慢的反馈回路可能会导致对操作员的不稳定性和透明度的丧失。这项工作为MPC控制的复杂机器人系统的透明远程操作提供了一个新颖的框架。特别是,我们采用反馈MPC方法并利用其结构来以快速速率计算运营商输入,该快速速率与MPC循环本身的更新率无关。我们在移动操纵器平台上演示了我们的框架,并表明它可以显着提高触觉远程操作的透明度和稳定性。我们还强调,所提出的反馈结构是令人满意的,并且不违反最佳控制问题中定义的任何约束。据我们所知,这项工作是使用全身MPC框架的双边操纵器的双边远程操作的首次实现。
translated by 谷歌翻译