模型预测控制(MPC)方案已经证明了它们在控制高自由度(DOF)复杂机器人系统方面的效率。但是,它们的计算成本很高,更新速度约为数十万。这种相对较慢的更新速率阻碍了这种系统稳定的触觉远程操作的可能性,因为缓慢的反馈回路可能会导致对操作员的不稳定性和透明度的丧失。这项工作为MPC控制的复杂机器人系统的透明远程操作提供了一个新颖的框架。特别是,我们采用反馈MPC方法并利用其结构来以快速速率计算运营商输入,该快速速率与MPC循环本身的更新率无关。我们在移动操纵器平台上演示了我们的框架,并表明它可以显着提高触觉远程操作的透明度和稳定性。我们还强调,所提出的反馈结构是令人满意的,并且不违反最佳控制问题中定义的任何约束。据我们所知,这项工作是使用全身MPC框架的双边操纵器的双边远程操作的首次实现。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的质心动力学之间进行交替,以实现动力学共识。我们使用等椭圆形参数化的新型动量惰性质地优化能够通过``惯性塑造''来产生高度的杂技运动。我们的全身优化方法可显着改善基于标准DDP的方法的质量从质心层中利用反馈。对于在线控制,我们通过完整的质心动力学的线性转换开发了一种新颖的凸模型预测控制方案。我们的控制器可以在单个优化中有效地对接触力和关节加速度有效地优化,从而实现更直接的加速度,从而实现更直接的优化与现有四倍体MPC控制器相比,跟踪动量丰富的动作。我们在四个不同的动态操作中证明了我们的轨迹计划者的能力和通用性。然后,我们在MIT MINI Cheetah平台上展示了​​一个硬件实验,以证明整个计划的性能和整个计划的性能和性能扭曲的控制管道跳动。
translated by 谷歌翻译
在处理多肢移动操纵器的触觉耳机时,尚未得到适当地解决从触觉设备和远程机器人之间的通信链路产生的稳定效果的问题。在这项工作中,我们提出了一种被动控制架构来触觉地垂直腿移动操纵器,同时在主设备和从控制器中存在延迟和频率不匹配的存在下保持稳定。在主侧,提出了对控制输入的离散时间能调制。在从侧,被动约束包括在基于优化的全身控制器中以满足能量限制。混合龙动力遥气局方案允许人工操作者在姿势模式下远程操作机器人的末端效应器,以及其基运动模式的基本速度。由此产生的控制架构在四足机器人上演示,具有添加到网络的人为延迟。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
This paper presents a state-of-the-art optimal controller for quadruped locomotion. The robot dynamics is represented using a single rigid body (SRB) model. A linear time-varying model predictive controller (LTV MPC) is proposed by using linearization schemes. Simulation results show that the LTV MPC can execute various gaits, such as trot and crawl, and is capable of tracking desired reference trajectories even under unknown external disturbances. The LTV MPC is implemented as a quadratic program using qpOASES through the CasADi interface at 50 Hz. The proposed MPC can reach up to 1 m/s top speed with an acceleration of 0.5 m/s2 executing a trot gait. The implementation is available at https:// github.com/AndrewZheng-1011/Quad_ConvexMPC
translated by 谷歌翻译
深度加强学习为雄心机器人提供了坚定的地形的强大运动政策。迄今为止,很少有研究已经利用基于模型的方法来将这些运动技能与机械手的精确控制相结合。在这里,我们将外部动态计划纳入了基于学习的移动操纵的机置策略。我们通过在模拟中应用机器人基础上的随机扳手序列来培训基础政策,并将有无令的扳手序列预测添加到政策观察。然后,该政策学会抵消部分已知的未来干扰。随机扳手序列被使用与模型预测控制的动态计划生成的扳手预测替换为启用部署。在训练期间,我们向机械手显示零拍摄适应。在硬件上,我们展示了带有外部扳手的腿机器人的稳定运动。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
本文提出了一种实时模型预测控制(MPC)方案,以使用有限时间范围内的机器人执行多个任务。在工业机器人应用中,我们必须仔细考虑避免关节位置,速度和扭矩极限的多个限制。此外,无奇异性和平稳的动作需要连续,安全地执行任务。我们没有制定非线性MPC问题,而是使用沿层次控制器生成的名义轨迹线性线性的运动和动态模型来设计线性MPC问题。这些线性MPC问题可通过使用二次编程来解决;因此,我们大大减少了提出的MPC框架的计算时间,因此所得更新频率高于1 kHz。与基于操作空间控制(OSC)的基线相比,我们提出的MPC框架在减少任务跟踪错误方面更有效。我们在数值模拟和使用工业操纵器的实际实验中验证方法。更具体地说,我们将方法部署在两个实用方案中用于机器人物流:1)控制携带重载的机器人,同时考虑扭矩限制,以及2)控制最终效果,同时避免奇异性。
translated by 谷歌翻译
我们展示了一个具有自动调整的入口控制器,该控制器可用于单个和多点接触机器人(例如,带有点脚或多指握把的腿部机器人)。控制器的目标是跟踪每个接触点的扳手轮廓,同时考虑旋转摩擦引起的额外扭矩。我们的接收控制器在在线操作期间具有自适应性,该方法通过自动调整方法调整了控制器的收益,同时遵循几个培训目标,以促进控制器稳定性,例如尽可能接近跟踪扳手配置文件,以确保控制输出在实力之内限制最小化滑移并避免运动学奇异性。我们使用多限制的攀登机器人来证明控制器在硬件上的鲁棒性,用于操纵和运动任务。
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译
模型预测控制(MPC)表明了控制诸如腿机器人等复杂系统的巨大成功。然而,在关闭循环时,在每个控制周期解决的有限范围最佳控制问题(OCP)的性能和可行性不再保证。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种修改版本,该版本的标准MPC方法用于带有活力的腿运动(弱向不变性)保证。在这种方法中,代替向问题添加(保守)终端约束,我们建议使用投影到在每个控制周期的OCP中的可行性内核中投影的测量状态。此外,我们使用过去的实验数据来找到最佳成本重量,该重量测量性能,约束满足鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和性能之间的贸易。为此目的,我们使用贝叶斯优化(BO)系统地设计实验,有助于有效地收集数据以了解导致强大性能的成本函数。我们的模拟结果具有不同的现实干扰(即外部推动,未铭出的执行器动态和计算延迟)表明了我们为人形机器人创造了强大的控制器的方法的有效性。
translated by 谷歌翻译
旨在进一步实现对机器人操纵中的影响的影响,提出了一种控制框架,其直接解决了通过跟踪机器人操纵器的控制所构成的挑战,该机器人操纵器的控制被任务执行与多个接触点相关联的名义上同时冲击。为此,我们扩展了参考展示框架,该框架利用刚性冲击图采用刚性冲击地图的扩展前和冲击后参考,在非弹性同时撞击的假设下确定。在实践中,机器人不会在冲击力矩的参考上居住;结果通常会发生不同接触点处的一系列冲击。我们的新方法通过引入额外的中间控制模式,在此上下文中扩展了参考传播。在该模式中,扭矩命令仍然基于达到撞击参考,目的是达到目标接触状态,但是禁用速度反馈,因为这可能由于快速的速度而可能是有害的。随着真实的实现,该方法是使用QP控制框架制定的,并在刚性机器人模型和具有柔性接头的现实机器人模型上使用数值模拟进行验证。
translated by 谷歌翻译
使用逆动力学的最佳控制(OC)提供了数值益处,例如粗略优化,更便宜的衍生物计算和高收敛速率。但是,为了利用腿部机器人的模型预测控制(MPC)中的这些好处,有效处理其大量平等约束至关重要。为此,我们首先(i)提出了一种新的方法来处理基于NullSpace参数化的平等约束。我们的方法可以适当地平衡最优性,以及动态和平等构成可行性,从而增加了吸引到良好本地最小值的盆地。为此,我们(ii)(ii)通过合并功能功能来调整以可行性为导向的搜索。此外,我们介绍了(iii)的(iii)对考虑任意执行器模型的反向动力学的凝结公式。我们还基于感知运动框架中基于反向动力学的新型MPC(iv)。最后,我们提出(v)最佳控制与正向动力学和逆动力学的理论比较,并通过数值评估。我们的方法使逆动力学MPC在硬件上首次应用,从而在Anymal机器人上进行了最新的动态攀登。我们在广泛的机器人问题上进行基准测试,并产生敏捷和复杂的动作。我们显示了我们的无空间分辨率和凝结配方的计算降低(高达47.3%)。我们通过以高收敛速率解决粗略优化问题(最多10 Hz离散化)来提供方法的益处。我们的算法在Crocoddyl内公开可用。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译