In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
自适应控制可以解决控制系统中的模型不确定性。但是,它是专为跟踪控制而设计的。近期机器人控制的最新进步表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们提出了一种用于腿机器人的新型自适应力控制框架。我们以我们提出的方法介绍了一种新的架构,将自适应控制纳入二次编程(QP)力控制。由于我们的方法是基于力控制,它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软撞击的鲁棒性。我们的方法在模拟和硬件实验中成功验证。虽然基线QP控制在具有小负载的身体跟踪误差中显示出显着的降级,但我们所提出的基于自适应力的控制可以使12千克Unitree A1机器人能够在粗糙的地形上行走,同时承载最多6次kg(50%的机器人重量)。当站在四条腿时,我们所提出的自适应控制甚至可以允许机器人在机器人高度中携带多达11kg的负载(机器人重量的92%),并且在机器人高度中具有小于5cm的跟踪误差。
translated by 谷歌翻译
大多数Quadrupss开发的高度驱动,因此他们的控制是非常繁琐的。它们需要先进的电子设备连续解决复杂的逆运动型方程。此外,随着传统距离传感器通常由于机器人的运动而导致的连续扰动通常发生故障,它们要求特殊和昂贵的传感器自动导航环境。另一个挑战是在步行时保持机器人的连续动态稳定性,这需要复杂和最先进的控制算法。本文介绍了我们内部棱镜联合电池的硬件设计和控制架构的彻底描述,称为Prisma。我们的目标是伪造强大而温制性的稳定的四足机器人,可以使用基本控制算法并利用传统传感器来导航未知环境。我们讨论了机器人在其运动,不同脚轨迹,可制造性和控制方面的益处和限制。
translated by 谷歌翻译
步行运动计划基于运动的不同组成部分(DCM)和线性倒置模型(LIPM)是可以实现的替代方案之一,以生成在线人类人体机器人步态轨迹。该算法需要调整不同的参数。在此,我们开发了一个框架来获得最佳参数,以实现Real Robot步态的稳定且节能的轨迹。为了找到最佳轨迹,在机器人的每个下肢关节下,代表能耗的四个成本函数,关节速度和应用扭矩的总和,以及基于零矩(ZMP)稳定性标准的成本函数。遗传算法用于框架中,以优化这些成本函数中的每一个。尽管轨迹计划是在简化模型的帮助下完成的,但通过考虑Bullet Physics Engine Simulator中的完整动力学模型和脚部接触模型,可以获得每个成本函数的值。这种优化的结果是,以最有效的方式行走的最稳定性和行走是相互对比的。因此,在另一次尝试中,对ZMP和以三种不同速度的能量成本函数进行了多目标优化。最后,我们比较了使用最佳参数生成的设计轨迹,并将模拟产生的仿真模拟器。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
人类能够以显着的敏捷性和轻松的方式谈判计划和计划外行为。本文的目的是系统地研究这种人类行为向两足步行机器人的翻译,即使形态本质上不同。具体而言,我们从计划和计划外的下台开始的人类数据开始。我们从人类减少阶层建模的角度分析了这些数据,编码质量(COM)运动学和接触力的中心,这使这些行为将这些行为转化为双皮德机器人的相应降低阶模型。我们通过基于非线性优化的控制器将所得的行为嵌入了两足机器人的全阶动力学中。最终结果是在不足的步行机器人上模拟中计划和计划外的下台。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
许多应用需要机器人通过具有大障碍的地形,例如自动驾驶,搜救和救援和外星探索。虽然机器人在避免稀疏障碍时已经出色,但它们仍然在扭转杂乱的障碍物中挣扎。灵感来自蟑螂的使用和响应具有不同方式的障碍物的障碍物,以跨越不同刚度的草地梁,在这里,我们开发了一种能够进行环境力传感的简约机器人的物理模型,向前推进两个光束以模拟和理解杂乱障碍的遍历。像刚度和偏转位置一样的光束属性可以从测量的嘈杂的梁接触力估计,其富力地随着感测时间而增加。使用这些估计,模型预测了使用势能障碍定义的遍历定义的成本,并使用它来规划和控制机器人以产生并跟踪以最小成本横穿轨迹。在遇到僵硬的光束时,模拟机器人从更昂贵的音高模式转换为更昂贵的滚动模式到遍历。当遇到脆弱的光束时,它选择推动横梁,而不是避免光束的能量成本。最后,我们开发了一个物理机器人并证明了估计方法的有用性。
translated by 谷歌翻译
如今,腿部四足机器人的设计和开发是科学研究的一个非常活跃的领域。实际上,由于与其他移动机器人相比,腿部机器人能够适应严峻的地形和各种环境条件,因此变得流行。随着对腿部机器人实验的需求较高,更多的研究和工程师需要一种负担得起,快速的运动算法开发方式。在本文中,我们提出了一个新的开源四倍的机器人超狗平台,该平台具有12个RC伺服电机,NVIDIA JETSON NANO COMPUTER和STM32F4 DISCOVERY板。 HyperDog是四倍的机器人软件开发的开源平台,该平台基于机器人操作系统2(ROS2)和Micro-Ros。此外,HyperDog是完全由3D印刷零件和碳纤维建造的四倍的机器人狗,它使机器人的重量轻和强度良好。这项工作的想法是证明机器人开发的一种负担得起且可定制的方式,并为研究和工程师提供了腿部机器人平台,在该平台中可以在模拟和真实环境中测试和验证不同的算法。具有代码的开发项目可在GitHub(https://github.com/ndhana94/hyperdog_ros2)上获得。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
本文提出了一个模型预测控制(MPC)框架,以实现MIT类人体上的动态步态。除了适应脚步位置和在线时机外,该建议的方法还可以理解高度,接触扳手,躯干旋转,运动学限制和谈判不均匀的地形。具体而言,线性MPC(LMPC)通过与当前的脚步位置进行线性线性线性线性来优化所需的脚步位置。低级任务空间控制器跟踪从LMPC的预测状态和控制轨迹,以利用全身动力学。最后,采用自适应步态频率方案来修改步进频率并增强步行控制器的鲁棒性。 LMPC和任务空间控制都可以作为二次程序(QP)有效地求解,因此适用于实时应用程序。模拟研究中,MIT类人动物遍历波场并从冲动性干扰中恢复为拟议方法恢复。
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译
受数字孪生系统的启发,开发了一个新型的实时数字双框架,以增强机器人对地形条件的感知。基于相同的物理模型和运动控制,这项工作利用了与真实机器人同步的模拟数字双重同步,以捕获和提取两个系统之间的差异信息,这两个系统提供了多个物理数量的高维线索,以表示代表差异建模和现实世界。柔软的,非刚性的地形会导致腿部运动中常见的失败,因此,视觉感知完全不足以估计地形的这种物理特性。我们使用了数字双重来开发可折叠性的估计,这通过动态步行过程中的物理互动来解决此问题。真实机器人及其数字双重双重测量之间的感觉测量的差异用作用于地形可折叠性分析的基于学习的算法的输入。尽管仅在模拟中受过培训,但学习的模型可以在模拟和现实世界中成功执行可折叠性估计。我们对结果的评估表明,对不同方案和数字双重的优势的概括,可在地面条件下可靠地检测到细微差别。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
尽管对Bipeds的运动稳定性进行了广泛的研究,但它们仍然缺乏在湿滑表面上缺乏干扰的应对能力。在本文中,关于表面摩擦限制,开发了一种用于稳定其矢状平面中的双模运动的新型控制器。通过考虑到表面稳定趋势的表面的物理限制,实现了更先进的可靠性水平,从而提供更高的功能,例如在低摩擦表面上推挽恢复,并防止稳定剂过度反应。基于离散的事件的策略包括修改每个脚步开头的步长和时间段,以便在考虑表面摩擦限制作为防止滑动的约束的同时重新建立稳定性必要条件。调整脚步以防止面对外部干扰的滑动被认为是保持稳定性的新策略,与人类反应非常相似。开发方法包括利用基本数学操作来获取控制输入的粗闭式解决方案,允许在收敛和计算成本之间达到平衡,即使具有适度的计算硬件,即使具有实时操作也非常适合实时操作。执行几种数值模拟,包括在低摩擦表面上的不同栅极之间的推挽恢复和切换,以证明所提出的控制器的有效性。在与人体步态经验相关的情况下,结果还揭示了一些有利于稳定性的物理方面以及在Gaits之间切换的事实,以降低面对不同条件的落地的风险。
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
跳跃可能是克服小地形差距或障碍的有效运动方法。在本文中,我们提出了两种不同的方法,可以用类人形机器人进行跳跃。具体而言,从预定义的COM轨迹开始,我们开发了速度控制器的理论和基于优化技术评估关节输入的优化技术的扭矩控制器。在模拟和类人形机器人ICUB中,对控制器进行了测试。在模拟中,机器人能够使用两个控制器跳跃,而实际系统仅使用速度控制器跳跃。结果突出了控制质心动量的重要性,他们表明联合性能,即腿部和躯干关节的最大功率,以及低水平的控制性能是至关重要的,以实现可接受的结果。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
由于机器人的脚下缺乏致动,全球地位控制是一个挑战性问题。在本文中,我们应用基于混合的倒立摆(H唇)踩踏3D废除后的双模型机器人进行全球位置控制。H-Lip行走的步骤步骤(S2S)动态近似于机器人行走的实际S2S动态,其中步长被认为是输入。因此,基于H唇的反馈控制器大致控制机器人表现得像H唇,它在误差不变集中保持的差异。模型预测控制(MPC)应用于3D中的全球位置控制的H唇。然后,H唇踩踏然后产生用于跟踪机器人的所需步进尺寸。此外,转向行为与步骤规划集成。拟议的框架在与概念验证实验中的模拟中验证了在模拟中的3D欠扰动的双模型机器人Cassie。
translated by 谷歌翻译
脚踝推断在很大程度上有助于人类步行的肢体能量产生,从而使运动更加顺畅,更有效。向截肢者提供这项净积极工作需要积极的假体,但有可能实现更自然的辅助运动。为此,本文将运动的多连接模型与基于力的非线性优化控制器一起使用,以实现2个受试者的动力转换假体,以实现类似人类的运动学行为,包括脚踝推断。特别是,我们利用基于模型的控制方法进行动态的双足机器人步行,以开发一种系统的方法,以实现不需要特定于主体的调整的动力假体上的人类行走。我们首先综合一个优化问题,该问题产生类似于人类联合轨迹的步态,并通过基于控制Lyapunov函数的基于lyapunov函数的非线性控制器实现这些步态,从。所提出的控制器是针对两个受试者的假体实施的,而无需在受试者之间进行调整,从而模拟了假体关节的特定主体人类运动学趋势。这些实验结果表明,与传统方法相比,我们基于力的非线性控制方法可以更好地跟踪人类运动轨迹。
translated by 谷歌翻译