如今,腿部四足机器人的设计和开发是科学研究的一个非常活跃的领域。实际上,由于与其他移动机器人相比,腿部机器人能够适应严峻的地形和各种环境条件,因此变得流行。随着对腿部机器人实验的需求较高,更多的研究和工程师需要一种负担得起,快速的运动算法开发方式。在本文中,我们提出了一个新的开源四倍的机器人超狗平台,该平台具有12个RC伺服电机,NVIDIA JETSON NANO COMPUTER和STM32F4 DISCOVERY板。 HyperDog是四倍的机器人软件开发的开源平台,该平台基于机器人操作系统2(ROS2)和Micro-Ros。此外,HyperDog是完全由3D印刷零件和碳纤维建造的四倍的机器人狗,它使机器人的重量轻和强度良好。这项工作的想法是证明机器人开发的一种负担得起且可定制的方式,并为研究和工程师提供了腿部机器人平台,在该平台中可以在模拟和真实环境中测试和验证不同的算法。具有代码的开发项目可在GitHub(https://github.com/ndhana94/hyperdog_ros2)上获得。
translated by 谷歌翻译
大多数Quadrupss开发的高度驱动,因此他们的控制是非常繁琐的。它们需要先进的电子设备连续解决复杂的逆运动型方程。此外,随着传统距离传感器通常由于机器人的运动而导致的连续扰动通常发生故障,它们要求特殊和昂贵的传感器自动导航环境。另一个挑战是在步行时保持机器人的连续动态稳定性,这需要复杂和最先进的控制算法。本文介绍了我们内部棱镜联合电池的硬件设计和控制架构的彻底描述,称为Prisma。我们的目标是伪造强大而温制性的稳定的四足机器人,可以使用基本控制算法并利用传统传感器来导航未知环境。我们讨论了机器人在其运动,不同脚轨迹,可制造性和控制方面的益处和限制。
translated by 谷歌翻译
鸟类等动物通过将腿部和空中迁移率与显性惯性作用相结合,广泛使用多模式运动。这种多模式运动壮举的机器人仿生型可以在协商其任务空间的能力方面产生超虚拟系统。本文的主要目的是讨论实现多模式运动的挑战,并报告我们在开发能够多模式运动(腿部和空中运动)的四足动物机器人方面的进展。我们报告了机器人中使用的机械和电气组件,除了为开发多功能多模式机器人平台实现目标的模拟和实验外。
translated by 谷歌翻译
生物启发的六角形机器人是在艺术技术和应用中的机器人中相对年轻的分支。尽管它们的冗余设计具有高度的灵活性和适应性,但符合其能力的研究领域仍然非常缺乏。本文将被提出最先进的六足动物机器人特定控制架构,其允许完全控制机器人速度,身体方向和步行步态类型。此外,将深入研究地形互动,导致发展地形调整控制算法,该算法将允许机器人迅速地对地形形状和诸如工作空间内的非线性和非连续性作出反应。它将被呈现一个动态模型,导致源自六足球运动的解释与基本平台PKM机器相当,并且通过Matlab SimMechanicStm物理模拟验证所述模型。然后,可以开发一种能够识别腿部地形触摸和反应以确保运动稳定性的反馈控制系统。最后,据报道,来自基于Phantomx Ax Methal Hexapod Mark II机器人平台的实验活动来源的结果是通过Trossen织机织机械度。
translated by 谷歌翻译
自适应控制可以解决控制系统中的模型不确定性。但是,它是专为跟踪控制而设计的。近期机器人控制的最新进步表明,力控制可以有效地实现敏捷和强大的运动。在本文中,我们提出了一种用于腿机器人的新型自适应力控制框架。我们以我们提出的方法介绍了一种新的架构,将自适应控制纳入二次编程(QP)力控制。由于我们的方法是基于力控制,它还保留了基线框架的优势,例如对不均匀地形,可控摩擦约束或软撞击的鲁棒性。我们的方法在模拟和硬件实验中成功验证。虽然基线QP控制在具有小负载的身体跟踪误差中显示出显着的降级,但我们所提出的基于自适应力的控制可以使12千克Unitree A1机器人能够在粗糙的地形上行走,同时承载最多6次kg(50%的机器人重量)。当站在四条腿时,我们所提出的自适应控制甚至可以允许机器人在机器人高度中携带多达11kg的负载(机器人重量的92%),并且在机器人高度中具有小于5cm的跟踪误差。
translated by 谷歌翻译
人类的生活是无价的。当需要完成危险或威胁生命的任务时,机器人平台可能是更换人类运营商的理想选择。我们在这项工作中重点关注的任务是爆炸性的手段。鉴于移动机器人在多种环境中运行时表现出强大的功能,机器人触觉有可能提供安全解决方案。但是,与人类的运作相比,在此阶段,自主权可能具有挑战性和风险。远程运行可能是完整的机器人自主权和人类存在之间的折衷方案。在本文中,我们提出了一种相对便宜的解决方案,可用于远程敏感和机器人远程操作,以使用腿部操纵器(即,腿部四足机器人的机器人和RGB-D传感)来协助爆炸的军械处置。我们提出了一种新型的系统集成,以解决四足动物全身控制的非平凡问题。我们的系统基于可穿戴的基于IMU的运动捕获系统,该系统用于远程操作和视觉触发性的VR耳机。我们在实验中验证了现实世界中的方法,用于需要全身机器人控制和视觉触发的机车操作任务。
translated by 谷歌翻译
In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
这篇评论介绍了四倍的机器人:Mitcheetah,Hyq,Anymal,BigDog及其机械结构,驱动和控制。
translated by 谷歌翻译
受数字孪生系统的启发,开发了一个新型的实时数字双框架,以增强机器人对地形条件的感知。基于相同的物理模型和运动控制,这项工作利用了与真实机器人同步的模拟数字双重同步,以捕获和提取两个系统之间的差异信息,这两个系统提供了多个物理数量的高维线索,以表示代表差异建模和现实世界。柔软的,非刚性的地形会导致腿部运动中常见的失败,因此,视觉感知完全不足以估计地形的这种物理特性。我们使用了数字双重来开发可折叠性的估计,这通过动态步行过程中的物理互动来解决此问题。真实机器人及其数字双重双重测量之间的感觉测量的差异用作用于地形可折叠性分析的基于学习的算法的输入。尽管仅在模拟中受过培训,但学习的模型可以在模拟和现实世界中成功执行可折叠性估计。我们对结果的评估表明,对不同方案和数字双重的优势的概括,可在地面条件下可靠地检测到细微差别。
translated by 谷歌翻译
惯性测量单元(IMU)在机器人研究中无处不在。它为机器人提供了姿势信息,以实现平衡和导航。但是,人类和动物可以在没有精确的方向或位置值的情况下感知其身体在环境中的运动。这种互动固有地涉及感知和动作之间的快速反馈回路。这项工作提出了一种端到端方法,该方法使用高维视觉观察和动作命令来训练视觉自模型进行腿部运动。视觉自模型学习机器人身体运动与地面纹理之间的空间关系从图像序列变化。我们证明机器人可以利用视觉自模型来实现机器人在训练过程中看不见的现实环境中的各种运动任务。通过我们提出的方法,机器人可以在没有IMU的情况下或在没有GPS或弱地磁场的环境中进行运动,例如该市的室内和Urban Canyons。
translated by 谷歌翻译
将包装从存储设施运送到消费者前门的物流通常采用高度专业的机器人,通常会将子任务分配到不同的系统,例如,操纵器臂进行分类和轮式车辆进行交付。最近的努力试图通过腿部和人形机器人进行统一的方法。但是,这些解决方案占据了大量空间,从而减少了可以适合运送车辆的包装数量。结果,这些庞大的机器人系统通常会降低可伸缩性和并行任务的潜力。在本文中,我们介绍了Limms(锁存智能模块化移动系统),以解决典型的最后一英里交付的操纵和交付部分,同时保持最小的空间足迹。 Limms是一种对称设计的,6型自由度(DOF)的类似于附件的机器人,两端都带有轮子和闩锁机构。通过将锁在表面上并锚定在一端,Limms可以充当传统的6多型操纵器臂。另一方面,多个lims可以锁在一个盒子上,并且像腿部机器人系统一样行为,包装是身体。在运输过程中,与传统的机器人系统相比,LIMM紧紧地折叠起来,占用的空间要少得多。一大批limms单元可以安装在单个送货工具内部,为新的交付优化和混合计划方法开放,从未做过。在本文中,使用硬件原型研究和呈现了LIMM的可行性,以及在典型的最后一英里交付中的一系列子任务的仿真结果。
translated by 谷歌翻译
四倍的机器人通常配备额外的手臂进行操作,对价格和重量产生负面影响。另一方面,腿部运动的要求意味着,这种机器人的腿通常具有执行操作所需的扭矩和精度。在本文中,我们介绍了一种新颖的设计,该设计针对一个小型四倍的机器人,配备了两个受甲壳类动物和指关节walker前的前肢启发的腿部安装机。通过使用腿部已经存在的执行器,我们只能使用每个肢体额外的3个电动机来实现操纵。该设计使相对于腿部电动机的小型且廉价的执行器的使用,从而进一步降低了成本和重量。由于集成的电缆/皮带轮系统,惯性的瞬间对腿的影响很小。正如我们在一套远程操作实验中所显示的那样,机器人能够执行单个和双LIMB操纵,并在操纵模式之间过渡。拟议的设计的性能与额外的手臂相似,同时称重和成本减少了每个操纵器的5倍,并可以完成需要2个操纵器的任务。
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
本文介绍了一个新颖的自适应频率MPC框架,用于在地形上具有不均匀的垫脚石上的两足球运动。详细说明,我们打算使用此MPC实现双足体周期步态的自适应脚部和步态,以便在不慢下放慢速度的情况下以不连续性穿越地形。我们将这种自适应频率MPC与Kino-Dynamics轨迹优化,以实现最佳步态时期,质量中心(COM)轨迹和脚部位置。我们使用全身控制(WBC)以及自适应频率MPC来跟踪离线优化的最佳轨迹。在数值验证中,我们具有优化的自适应频率MPC框架已显示出比固定频率MPC的优势。所提出的框架可以控制两足动物的机器人,穿过具有扰动的石头高度,宽度和表面形状的不均匀的垫脚石地形,同时保持平均速度为1.5 m/s。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译