Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
腿部运动的最新进展使四足动物在具有挑战性的地形上行走。但是,两足机器人本质上更加不稳定,因此很难为其设计步行控制器。在这项工作中,我们利用了对机车控制的快速适应的最新进展,并将其扩展到双皮亚机器人。与现有作品类似,我们从基本策略开始,该策略在将适应模块的输入中作为输入作为输入。该外部媒介包含有关环境的信息,并使步行控制器能够快速在线适应。但是,外部估计器可能是不完善的,这可能导致基本政策的性能不佳,这预计是一个完美的估计器。在本文中,我们提出了A-RMA(Adapting RMA),该A-RMA(适应RMA)还通过使用无模型RL对其进行了鉴定,从而适应了不完美的外部外部估计器的基本策略。我们证明,A-RMA在仿真中胜过许多基于RL的基线控制器和基于模型的控制器,并显示了单个A-RMA策略的零拍摄部署,以使双皮德机器人Cassie能够在各种各样的现实世界中的不同场景超出了培训期间所见。 https://ashish-kmr.github.io/a-rma/的视频和结果
translated by 谷歌翻译
在本文中,我们提出了一个可靠的控制器,该控制器在真正的盲人四足机器人上实现了自然且稳定的快速运动。只有本体感受信息,四足机器人的身体长度最大速度可以移动10倍,并且具有通过各种复杂地形的能力。通过无模型的强化学习,在模拟环境中训练控制器。在本文中,拟议的宽松邻里控制体系结构不仅保证了学习率,而且还获得了一个易于转移到真正四倍的机器人的动作网络。我们的研究发现,训练过程中存在数据对称性损失的问题,这导致学习控制器在左右对称的四倍体机器人结构上的性能不平衡,并提出了一个镜像世界神经网络来解决性能问题。由Mirror-World网络组成的学习控制器可以使机器人具有出色的反扰动能力。训练架构中没有使用特定的人类知识,例如脚部轨迹发生器。学识渊博的控制器可以协调机器人的步态频率和运动速度,并且与人工设计的控制器相比,运动模式更自然,更合理。我们的控制器具有出色的抗扰动性能,并且具有良好的概括能力,可以达到从未学到的运动速度,并且从未见过的地形。
translated by 谷歌翻译
Learned locomotion policies can rapidly adapt to diverse environments similar to those experienced during training but lack a mechanism for fast tuning when they fail in an out-of-distribution test environment. This necessitates a slow and iterative cycle of reward and environment redesign to achieve good performance on a new task. As an alternative, we propose learning a single policy that encodes a structured family of locomotion strategies that solve training tasks in different ways, resulting in Multiplicity of Behavior (MoB). Different strategies generalize differently and can be chosen in real-time for new tasks or environments, bypassing the need for time-consuming retraining. We release a fast, robust open-source MoB locomotion controller, Walk These Ways, that can execute diverse gaits with variable footswing, posture, and speed, unlocking diverse downstream tasks: crouching, hopping, high-speed running, stair traversal, bracing against shoves, rhythmic dance, and more. Video and code release: https://gmargo11.github.io/walk-these-ways/
translated by 谷歌翻译
深度加强学习为雄心机器人提供了坚定的地形的强大运动政策。迄今为止,很少有研究已经利用基于模型的方法来将这些运动技能与机械手的精确控制相结合。在这里,我们将外部动态计划纳入了基于学习的移动操纵的机置策略。我们通过在模拟中应用机器人基础上的随机扳手序列来培训基础政策,并将有无令的扳手序列预测添加到政策观察。然后,该政策学会抵消部分已知的未来干扰。随机扳手序列被使用与模型预测控制的动态计划生成的扳手预测替换为启用部署。在训练期间,我们向机械手显示零拍摄适应。在硬件上,我们展示了带有外部扳手的腿机器人的稳定运动。
translated by 谷歌翻译
In this paper, we present a framework for learning quadruped navigation by integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators to track velocity commands while avoiding collisions with the environment. We compare different neural network architectures (i.e. memory-free and memory-enabled) which learn implicit interoscillator couplings, as well as varying the strength of the explicit coupling weights in the oscillator dynamics equations. We train our policies in simulation and perform a sim-to-real transfer to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that both memory-enabled policy representations and explicit interoscillator couplings are beneficial for a successful sim-to-real transfer for navigation tasks. Video results can be found at https://youtu.be/O_LX1oLZOe0.
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
深度强化学习(Deep RL)已成为开发腿部机器人控制器的有效工具。但是,香草深RL通常需要大量的训练样本,并且对于实现强大的行为不可行。取而代之的是,研究人员通过合并人类专家的知识来调查一种新颖的政策架构,例如调节轨迹发生器(PMTG)的政策。该体系结构通过组合参数轨迹生成器(TG)和反馈策略网络来构建一个经常性的控制循环,以实现更强大的行为。为了利用人类专家的知识,但消除了耗时的互动教学,研究人员调查了一种新颖的架构,策略调节轨迹发生器(PMTG),该建筑通过结合参数轨迹生成器(TG)和反馈策略来构建经常性的控制循环网络使用直观的先验知识来实现​​更强大的行为。在这项工作中,我们建议通过使用接触感知的有限状态机器(FSM)代替TG来调整有限状态机(PM-FSM),从而为每条腿提供更灵活的控制。与TGS相比,FSM在每个腿部运动生成器上提供高级管理,并实现灵活的状态安排,这使得学习的行为不那么容易受到看不见的扰动或具有挑战性的地形。本发明为政策提供了明确的联系事件的概念,以协商意外的扰动。我们证明,在模拟机器人和真实的机器人上,所提出的架构可以在各种情况下(例如具有挑战性的地形或外部扰动)实现更强大的行为。补充视频可以在以下网址找到:https://youtu.be/78cbomqtkjq。
translated by 谷歌翻译
通过腿部机器人在具有挑战性的环境上进行本地导航的通用方法需要路径计划,路径跟随和运动,这通常需要机动控制策略,以准确跟踪指挥速度。但是,通过将导航问题分解为这些子任务,我们限制了机器人的功能,因为各个任务不考虑完整的解决方案空间。在这项工作中,我们建议通过深入强化学习来训练端到端政策来解决完整的问题。机器人不必在提供的时间内到达目标位置,而不是不断跟踪预算的路径。该任务的成功仅在情节结束时进行评估,这意味着该策略不需要尽快到达目标。可以免费选择其路径和运动步态。以这种方式培训政策可以打开更多可能的解决方案,这使机器人能够学习更多复杂的行为。我们比较我们的速度跟踪方法,并表明任务奖励的时间依赖性对于成功学习这些新行为至关重要。最后,我们证明了在真正的四足动物机器人上成功部署政策。机器人能够跨越具有挑战性的地形,这是以前无法实现的,同时使用更节能的步态并达到更高的成功率。
translated by 谷歌翻译
Gaits和Transitions是腿部运动的关键组件。对于腿机器人,描述和再现Gaits以及过渡仍然存在长期挑战。强化学习已成为制定腿机器人控制器的强大工具。然而,学习多次Gaits和Transitions,与多任务学习问题有关。在这项工作中,我们提出了一种新颖的框架,用于培训一个简单的控制策略,以便将四足机器人培训到各种GA足够的机器人。使用四个独立阶段作为步态发生器和控制策略之间的界面,其表征了四英尺的运动。由阶段引导,四叉机器人能够根据生成的遗传率,例如步行,小跑,起搏和边界,并在那些Gaits之间进行过渡。可以使用更多的一般阶段来产生复杂的Gaits,例如混合节奏跳舞。通过控制策略,黑豹机器人是一种中型狗大小的四足机器人,可以在自然环境中平滑且鲁棒地在速度和鲁棒方面进行速度下进行所有学习的电机技能。
translated by 谷歌翻译
在这项工作中,我们介绍并研究了一种培训设置,该培训设置通过在单个工作站GPU上使用大量并行性来实现现实世界机器人任务的快速政策。我们分析和讨论不同培训算法组件在大规模平行制度中对最终政策绩效和培训时间的影响。此外,我们还提供了一种新颖的游戏启发课程,非常适合与数千个模拟机器人并行培训。我们通过训练四足机器人Anymal在具有挑战性的地形上行走来评估该方法。平行方法允许在不到四分钟的时间内对平坦地形进行培训政策,而在二十分钟内,地形不平衡。与以前的工作相比,这代表了多个数量级的加速。最后,我们将政策转移到真实的机器人中以验证该方法。我们开放培训代码,以帮助加速学习的腿部运动领域的进一步研究。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
深度强化学习是在不需要领域知识的不受控制环境中学习政策的有前途的方法。不幸的是,由于样本效率低下,深度RL应用主要集中在模拟环境上。在这项工作中,我们证明了机器学习算法和库的最新进步与精心调整的机器人控制器相结合,导致在现实世界中仅20分钟内学习四倍的运动。我们在几个室内和室外地形上评估了我们的方法,这些室内和室外地形对基于古典模型的控制器来说是具有挑战性的。我们观察机器人能够在所有这些地形上始终如一地学习步态。最后,我们在模拟环境中评估我们的设计决策。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
现在,最先进的强化学习能够在模拟中学习双皮亚机器人的多功能运动,平衡和推送能力。然而,现实差距大多被忽略了,模拟结果几乎不会转移到真实硬件上。在实践中,它是不成功的,因为物理学过度简化,硬件限制被忽略,或者不能保证规律性,并且可能会发生意外的危险运动。本文提出了一个强化学习框架,该框架能够学习以平稳的开箱即用向现实的转移,仅需要瞬时的本体感受观察,可以学习强大的站立式恢复。通过结合原始的终止条件和政策平滑度调节,我们使用没有记忆力或观察历史的政策实现了稳定的学习,SIM转移和安全性。然后使用奖励成型来提供有关如何保持平衡的见解。我们展示了其在下LIMB医学外骨骼Atalante中的现实表现。
translated by 谷歌翻译