软致动器在符合性和形态方面表现出具有很大的优势,用于操纵细腻物体和在密闭空间中的检查。对于可以提供扭转运动的软致动器有一个未满足的需要。放大工作空间并增加自由度。为此目标,我们呈现由硅胶制成的折纸启发的软充气执行器(OSPas)。原型可以输出多于一个旋转的旋转(高达435 {\ DEG}),比以前的同行更大。我们描述了设计和制作方法,构建了运动学模型和仿真模型,并分析和优化参数。最后,我们通过整合到能够同时抓住和提升脆弱或扁平物体的夹具,这是一种能够与扭转致动器的直角拾取和放置物品的多功能机器人,以及柔软的蛇通过扭转致动器的扭转能够改变姿态和方向的机器人。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
结肠镜检查被认为是下层胃肠道(GI)癌症筛查的黄金标准,考虑到降低推荐的筛查年龄,全世界的筛查计划。尽管如此,由于结肠镜和结肠壁之间发生的力,常规结肠镜检查可能会给患者带来不适。已经提出了机器人解决方案,以减少不适感,并提高可访问性和图像质量。为了解决传统和机器人结肠镜检查的局限性,在本文中,我们介绍了软屏幕系统,这是一种基于Eversion导航的新型软性形状胶囊机器人,用于内窥镜检查。多个轨道围绕着系统的身体。这些轨道是由单个电动机搭配蠕虫齿轮和内部刚性底盘的Evert驱动的,从而使基于完整的轨道导航。两个可充气的环形腔室封闭了这个刚性底盘并穿过轨道,使它们在膨胀时取代。该位移可用于调节与周围壁的接触,从而实现牵引力控制并调整整体直径以匹配本地管腔尺寸。在这项工作中介绍了第一个束缚原型在2:1尺度下的系带原型的设计。实验结果显示了不同管腔直径和曲率的有效导航能力,为能够强大导航和可靠控制成像的新型机器人铺平了道路,并具有超出结肠镜检查的应用,包括胃镜检查和胶囊内窥镜检查。
translated by 谷歌翻译
意识到高性能软机器人抓手是具有挑战性的,因为软执行器和人造肌肉的固有局限性。尽管现有的软机器人抓手表现出可接受的性能,但他们的设计和制造仍然是一个空旷的问题。本文探索了扭曲的弦乐执行器(TSA),以驱动软机器人抓手。 TSA已被广泛用于众多机器人应用中,但它们包含在软机器人中是有限的。提议的抓手设计灵感来自人类手,四个手指和拇指。通过使用拮抗剂TSA,在手指中实现了可调刚度。手指的弯曲角度,驱动速度,阻塞力输出和刚度调整是实验表征的。抓手能够在Kapandji测试中获得6分,并且还可以达到33个Feix Grasp Grasp分类法中的31个。一项比较研究表明,与其他类似抓手相比,提出的抓手表现出等效或卓越的性能。
translated by 谷歌翻译
动态运动是机器人武器的关键特征,使他们能够快速有效地执行任务。在任务空间运行时,软连续式操纵器目前尚未考虑动态参数。这种缺点使现有的软机器人缓慢并限制了他们处理外力的能力,特别是在物体操纵期间。我们通过使用动态操作空间控制来解决此问题。我们的控制方法考虑了3D连续体臂的动态参数,并引入了新模型,使多段软机械师能够在任务空间中顺利运行。先前仅为刚性机器人提供的先进控制方法现在适用于软机器;例如,潜在的场避免以前仅针对刚性机器人显示,现在延伸到软机器人。使用我们的方法,柔软的机械手现在可以实现以前不可能的各种任务:我们评估机械手在闭环控制实验中的性能,如拾取和障碍物避免,使用附加的软夹具抛出物体,并通过用掌握的粉笔绘制来故意将力施加到表面上。除了新的技能之外,我们的方法还提高了59%的跟踪精度,并将速度提高到19.3的尺寸,与最新的任务空间控制相比。通过这些新发现能力,软机器人可以开始挑战操纵领域的刚性机器人。我们固有的安全和柔顺的软机器人将未来的机器人操纵到一个不用的设置,其中人和机器人并行工作。
translated by 谷歌翻译
与传统的刚性机器人相比,由于合规性,安全性和低成本,软机器人由于其优点而引起了越来越多的关注。作为软机器人的重要组成部分,软机器人夹具还显示出其优越的同时抓住具有不规则形状的物体。已经进行了最近的研究,以通过调整可变有效长度(VEL)来改善其抓握性能。然而,通过多室设计或可调刚度形状记忆材料实现的Vel需要复杂的气动电路设计或耗时的相变过程。这项工作提出了一种由3D印刷灯丝,忍者克朗的折叠式软机器人执行器。它是通过高速模型进行实验测试和表示的。进行数学和有限元建模,以研究所提出的软致动器的弯曲行为。此外,提出了一种拮抗约束机制来实现VEL,并且实验表明实现了更好的符合性。最后,设计了一种双模夹具,以展示Vel对抓取性能的进步。
translated by 谷歌翻译
人类无法访问许多空间,机器人可以帮助传感器和设备提供。这些空间中有许多包含三维通道和不均匀的地形,这些通道对机器人设计和控制构成了挑战。通过同时进行的远处和体材料反转移动的环形机器人有望在这些类型的空间中导航。我们提出了一种新型的柔软的环形机器人,该机器人在充满空气的膜内使用电动设备推动自己推动自己。我们的机器人只需要一个控制信号即可移动,可以符合其环境,并且可以垂直爬上电动机扭矩,该电动机与用来支撑机器人对环境的力无关。我们得出并验证了其运动所涉及的力的模型,并演示了机器人导航迷宫和攀登管道的能力。
translated by 谷歌翻译
在本文中,我们介绍了一个数据驱动的框架,以优化软抓地力的平面外刚度,以实现机械性能,如难以扭动且易于弯曲。在软气动弯曲执行器(SPBA)的设计中证明了该方法的有效性。首先,定义了一个新的目标函数来定量评估平面外刚度以及弯曲性能。然后,对SPBA设计的参数模型进行灵敏度分析,以确定有限元分析(FEA)的优化设计参数。为了启用数值优化的计算,采用数据驱动的方法来学习成本函数,该成本函数直接代表平面外刚度作为设计变量的可区分函数。一种基于梯度的方法用于最大化SPBA的平面外刚度,同时确保特定的弯曲性能。我们方法的有效性已在3D打印的握把上进行的物理实验中得到了证明。
translated by 谷歌翻译
Grasping是实际应用中大多数机器人的重要能力。软机器人夹具被认为是机器人抓握的关键部分,并在对象几何形状方差方差的高度和稳健性方面引起了相当大的关注;然而,它们仍然受到相应的传感能力和致动机制的限制。我们提出了一种新型软夹具,看起来像碎碎的碎碎片,其具有综合模具技术制造的柔顺的双稳态机构,纯粹机械地实现感测和致动。特别地,所提出的夹持器中的卡通双稳态结构允许我们降低机构的复杂性,控制,感测设计,因为抓握和感测行为是完全被动的。一旦夹持器的触发位置触及物体并施加足够的力,抓握行为就会自动激励。为了用各种型材抓住物体,所提出的粮食软夹具(GSG)设计为能够包封,夹紧和持续爪。夹具由腔掌,棕榈帽和三个手指组成。首先,分析夹具的设计。然后,在构造理论模型之后,进行有限元(FE)仿真以验证构建的模型。最后,进行了一系列掌握实验,以评估所提出的夹持器对抓握和感测的卡通行为。实验结果说明了所提出的夹持器可以操纵各种柔软和刚性物体,并且即使它承担外部干扰,也可以保持稳定。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
在过去的几十年中,出现了一种趋势,指出在可移动,可编程和可转换机制中利用结构不稳定性。受钢制发夹的启发,我们将面板组件与可靠的结构相结合,并使用半刚性塑料板建造合规的拍打机构,并将其安装在束缚的气动软机器人鱼和无螺旋螺旋式的电动机驱动器上,以展示它的前所未有的优势。设计规则是根据理论和验证提出的。观察到与参考相比,气动鱼的游泳速度提高了两倍,对Untether Fish的进一步研究表明,对于不固定的兼容的游泳运动员,可损坏的速度为2.03 BL/S(43.6 cm/s),优于先前报告的最快的,其幅度为194%。这项工作可能预示着下一代符合下一代机器人技术的结构革命。
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
软机械设计与控制的共同优化需要快速实现现实验证的快速手段。现有的创建管道不允许软机器的SWIFT原型,以便快速测试各种设计配置和控制策略。这项工作提出了一种用于快速迭代设计和制造小型化模块化硅氧烷弹性体的机器人鱼类的管道。模块化设计允许具有不同配置的机器人鱼类简单快速迭代,以帮助目前对设计优化方法的开发的研究。所提出的机器人鱼可以用作标准化的测试平台,可以在哪些性能度量如推力和运动范围之类的标准化测试平台。我们进一步展示了能够测量输入压力,尾部变形和推力的水下评估设置的设计。制造和实验评估具有不同刚度和内部气动室配置的多种机器人鱼原型。机器人的灵活模块化设计原理及其评估平台解锁了更有效的软机器人鱼类的可能性,将来有利于未来设计优化和水下勘探的研究。
translated by 谷歌翻译
空气中的快速且通用的物体操纵是一个开放的挑战。节能和自适应的软抓地力与敏捷航空媒介相结合可以彻底改变仓库等区域的空中机器人操纵。本文提出了一个由生物启发的抓斗者,该抓地力由安装在四轮驱动器上的液压放大的静电执行器提供动力,该执行器可以与其环境安全自然地相互作用。我们抓紧的概念是由鹰的脚激励的。我们的自定义多动物概念的灵感来自蝎子尾部设计(由邻接的小袋组成的基本电极组成)和蜘蛛启发的接头(经典的小袋电动机,带有灵活的铰链层)。与单铰链概念相比,这两种设计的混合体在高达25 {\ deg}的中等偏转下实现了更高的力输出。此外,将铰链层夹紧可改善抓手的稳健性。我们第一次表明,使用静电致动,空气中的软操作可能是可能的。这项研究证明了在空中机器人操作中不受束缚的液压扩增的执行器的潜力。我们的概念证明为在移动航空系统中使用液压静电执行器的使用打开了。
translated by 谷歌翻译
调节软执行器刚度的能力在提高与环境相互作用的效率方面起着至关重要的作用。但是,对于单向刚度调制机制,不能同时保证高侧向刚度和宽范围的弯曲刚度。因此,我们从手指的解剖结构中汲取灵感,提出具有双向可调刚度特性(BTSA)的软执行器。 BTSA由空气式杂种致动(ATA)和骨状结构(BLS)组成。 ATA可以将弯曲刚度从0.2 n/mm调整为0.7 n/mm,约为3.5倍。与无BLS相比,BLS的侧向刚度可增强4.2倍。同时,可以将侧向刚度调节在一定刚度范围内(例如,当弯曲角度为45度时从0.35 N/mm到0.46)。 BLS是根据简化的刚度分析模型设计的。并提出了一种基于蜡的制造方法,以确保气密性。进行有关指尖力,弯曲刚度和侧向刚度的实验以验证特性。
translated by 谷歌翻译
软机器人操纵器对于在受限环境中的医疗干预或工业检查等一系列应用都具有吸引力。文献中已经提出了无数的软机器人操纵器,但是它们的设计往往相对相似,并且通常提供相对较低的力。这限制了他们可以携带的有效载荷,因此限制了它们的可用性。在公共框架下不可用不同设计的力的比较,并且设计具有不同的直径和功能,使它们难以比较。在本文中,我们介绍了一种软机器人操纵器的设计,该设计的优化为最大化其力,同时尊重典型的应用程序约束,例如大小,工作区,有效负载能力和最大压力。此处介绍的设计具有一个优势,即它变为最佳设计,因为它被加压到朝不同方向移动,这会导致较高的横向力。该机器人是使用一组原理设计的,因此可以适应其他应用程序。我们还为软机器人操纵器提供了非二维分析,并将其应用于此处提出的设计的性能与文献中其他设计的性能。我们表明,我们的设计比同一类别中的其他设计具有更高的力量。实验结果证实了我们提出的设计的较高力量。
translated by 谷歌翻译
Applying suction grippers in unstructured environments is a challenging task because of depth and tilt errors in vision systems, requiring additional costs in elaborate sensing and control. To reduce additional costs, suction grippers with compliant bodies or mechanisms have been proposed; however, their bulkiness and limited allowable error hinder their use in complex environments with large errors. Here, we propose a compact suction gripper that can pick objects over a wide range of distances and tilt angles without elaborate sensing and control. The spring-inserted gripper body deploys and conforms to distant and tilted objects until the suction cup completely seals with the object and retracts immediately after, while holding the object. This seamless deployment and retraction is enabled by connecting the gripper body and suction cup to the same vacuum source, which couples the vacuum picking and retraction of the gripper body. Experimental results validated that the proposed gripper can pick objects within 79 mm, which is 1.4 times the initial length, and can pick objects with tilt angles up to 60{\deg}. The feasibility of the gripper was verified by demonstrations, including picking objects of different heights from the same picking height and the bin picking of transparent objects.
translated by 谷歌翻译
大多数空中操纵器都使用串行刚性链接设计,在操纵过程中启动接触时会导致大力,并可能导致飞行稳定性难度。连续操作器的遵守情况可能会改善这种限制。为了实现这一目标,我们介绍了空中无人机的紧凑,轻巧和模块化电缆驱动的连续操作的新颖设计。然后,我们为其运动学,静电和刚度(合规性)得出一个完整的建模框架。该框架对于将操纵器集成到空中无人机至关重要。最后,我们报告了硬件原型的初步实验验证,从而提供了有关其操纵可行性的见解。未来的工作包括对拟议的连续操作机与空中无人机的集成和测试。
translated by 谷歌翻译