Grasping是实际应用中大多数机器人的重要能力。软机器人夹具被认为是机器人抓握的关键部分,并在对象几何形状方差方差的高度和稳健性方面引起了相当大的关注;然而,它们仍然受到相应的传感能力和致动机制的限制。我们提出了一种新型软夹具,看起来像碎碎的碎碎片,其具有综合模具技术制造的柔顺的双稳态机构,纯粹机械地实现感测和致动。特别地,所提出的夹持器中的卡通双稳态结构允许我们降低机构的复杂性,控制,感测设计,因为抓握和感测行为是完全被动的。一旦夹持器的触发位置触及物体并施加足够的力,抓握行为就会自动激励。为了用各种型材抓住物体,所提出的粮食软夹具(GSG)设计为能够包封,夹紧和持续爪。夹具由腔掌,棕榈帽和三个手指组成。首先,分析夹具的设计。然后,在构造理论模型之后,进行有限元(FE)仿真以验证构建的模型。最后,进行了一系列掌握实验,以评估所提出的夹持器对抓握和感测的卡通行为。实验结果说明了所提出的夹持器可以操纵各种柔软和刚性物体,并且即使它承担外部干扰,也可以保持稳定。
translated by 谷歌翻译
Fruit harvesting has recently experienced a shift towards soft grippers that possess compliance, adaptability, and delicacy. In this context, pneumatic grippers are popular, due to provision of high deformability and compliance, however they typically possess limited grip strength. Jamming possesses strong grip capability, however has limited deformability and often requires the object to be pushed onto a surface to attain a grip. This paper describes a hybrid gripper combining pneumatics (for deformation) and jamming (for grip strength). Our gripper utilises a torus (donut) structure with two chambers controlled by pneumatic and vacuum pressure respectively, to conform around a target object. The gripper displays good adaptability, exploiting pneumatics to mould to the shape of the target object where jamming can be successfully harnessed to grip. The main contribution of the paper is design, fabrication, and characterisation of the first hybrid gripper that can use granular jamming in free space, achieving significantly larger retention forces compared to pure pneumatics. We test our gripper on a range of different sizes and shapes, as well as picking a broad range of real fruit.
translated by 谷歌翻译
与传统的刚性机器人相比,由于合规性,安全性和低成本,软机器人由于其优点而引起了越来越多的关注。作为软机器人的重要组成部分,软机器人夹具还显示出其优越的同时抓住具有不规则形状的物体。已经进行了最近的研究,以通过调整可变有效长度(VEL)来改善其抓握性能。然而,通过多室设计或可调刚度形状记忆材料实现的Vel需要复杂的气动电路设计或耗时的相变过程。这项工作提出了一种由3D印刷灯丝,忍者克朗的折叠式软机器人执行器。它是通过高速模型进行实验测试和表示的。进行数学和有限元建模,以研究所提出的软致动器的弯曲行为。此外,提出了一种拮抗约束机制来实现VEL,并且实验表明实现了更好的符合性。最后,设计了一种双模夹具,以展示Vel对抓取性能的进步。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
在本文中,我们介绍了一个数据驱动的框架,以优化软抓地力的平面外刚度,以实现机械性能,如难以扭动且易于弯曲。在软气动弯曲执行器(SPBA)的设计中证明了该方法的有效性。首先,定义了一个新的目标函数来定量评估平面外刚度以及弯曲性能。然后,对SPBA设计的参数模型进行灵敏度分析,以确定有限元分析(FEA)的优化设计参数。为了启用数值优化的计算,采用数据驱动的方法来学习成本函数,该成本函数直接代表平面外刚度作为设计变量的可区分函数。一种基于梯度的方法用于最大化SPBA的平面外刚度,同时确保特定的弯曲性能。我们方法的有效性已在3D打印的握把上进行的物理实验中得到了证明。
translated by 谷歌翻译
意识到高性能软机器人抓手是具有挑战性的,因为软执行器和人造肌肉的固有局限性。尽管现有的软机器人抓手表现出可接受的性能,但他们的设计和制造仍然是一个空旷的问题。本文探索了扭曲的弦乐执行器(TSA),以驱动软机器人抓手。 TSA已被广泛用于众多机器人应用中,但它们包含在软机器人中是有限的。提议的抓手设计灵感来自人类手,四个手指和拇指。通过使用拮抗剂TSA,在手指中实现了可调刚度。手指的弯曲角度,驱动速度,阻塞力输出和刚度调整是实验表征的。抓手能够在Kapandji测试中获得6分,并且还可以达到33个Feix Grasp Grasp分类法中的31个。一项比较研究表明,与其他类似抓手相比,提出的抓手表现出等效或卓越的性能。
translated by 谷歌翻译
用单个机器人手抓住各种大小和形状的各种物体是一项挑战。为了解决这个问题,我们提出了一只名为“ F3手”的新机器人手,受人食指和拇指的复杂运动的启发。 F3手试图通过将平行运动手指和旋转运动手指与自适应功能结合在一起来实现复杂的人类样运动。为了确认我们的手的性能,我们将其附加到移动操纵器 - 丰田人支持机器人(HSR),并进行了掌握实验。在我们的结果中,我们表明它能够掌握所有YCB对象(总共82个),包括外径的垫圈小至6.4mm。我们还构建了一个用于直观操作的系统,并使用3D鼠标掌握了另外24个对象,包括小牙签和纸夹以及大型投手和饼干盒。即使在不精确的控制和位置偏移量下,F3手也能够在抓住98%的成功率方面取得成功率。此外,由于手指的适应性功能,我们展示了F3手的特征,这些特征促进了在理想的姿势中抓住诸如草莓之类的软物体。
translated by 谷歌翻译
This study proposed a novel robotic gripper that can achieve grasping and infinite wrist twisting motions using a single actuator. The gripper is equipped with a differential gear mechanism that allows switching between the grasping and twisting motions according to the magnitude of the tip force applied to the finger. The grasping motion is activated when the tip force is below a set value, and the wrist twisting motion is activated when the tip force exceeds this value. "Twist grasping," a special grasping mode that allows the wrapping of a flexible thin object around the fingers of the gripper, can be achieved by the twisting motion. Twist grasping is effective for handling objects with flexible thin parts, such as laminated packaging pouches, that are difficult to grasp using conventional antipodal grasping. In this study, the gripper design is presented, and twist grasping is analyzed. The gripper performance is experimentally validated.
translated by 谷歌翻译
Granular jamming has recently become popular in soft robotics with widespread applications including industrial gripping, surgical robotics and haptics. Previous work has investigated the use of various techniques that exploit the nature of granular physics to improve jamming performance, however this is generally underrepresented in the literature compared to its potential impact. We present the first research that exploits vibration-based fluidisation actively (e.g., during a grip) to elicit bespoke performance from granular jamming grippers. We augment a conventional universal gripper with a computer-controllled audio exciter, which is attached to the gripper via a 3D printed mount, and build an automated test rig to allow large-scale data collection to explore the effects of active vibration. We show that vibration in soft jamming grippers can improve holding strength. In a series of studies, we show that frequency and amplitude of the waveforms are key determinants to performance, and that jamming performance is also dependent on temporal properties of the induced waveform. We hope to encourage further study focused on active vibrational control of jamming in soft robotics to improve performance and increase diversity of potential applications.
translated by 谷歌翻译
调节软执行器刚度的能力在提高与环境相互作用的效率方面起着至关重要的作用。但是,对于单向刚度调制机制,不能同时保证高侧向刚度和宽范围的弯曲刚度。因此,我们从手指的解剖结构中汲取灵感,提出具有双向可调刚度特性(BTSA)的软执行器。 BTSA由空气式杂种致动(ATA)和骨状结构(BLS)组成。 ATA可以将弯曲刚度从0.2 n/mm调整为0.7 n/mm,约为3.5倍。与无BLS相比,BLS的侧向刚度可增强4.2倍。同时,可以将侧向刚度调节在一定刚度范围内(例如,当弯曲角度为45度时从0.35 N/mm到0.46)。 BLS是根据简化的刚度分析模型设计的。并提出了一种基于蜡的制造方法,以确保气密性。进行有关指尖力,弯曲刚度和侧向刚度的实验以验证特性。
translated by 谷歌翻译
This letter proposes a novel single-fingered reconfigurable robotic gripper for grasping objects in narrow working spaces. The finger of the developed gripper realizes two configurations, namely, the insertion and grasping modes, using only a single motor. In the insertion mode, the finger assumes a thin shape such that it can insert its tip into a narrow space. The grasping mode of the finger is activated through a folding mechanism. Mode switching can be achieved in two ways: switching the mode actively by a motor, or combining passive rotation of the fingertip through contact with the support surface and active motorized construction of the claw. The latter approach is effective when it is unclear how much finger insertion is required for a specific task. The structure provides a simple control scheme. The performance of the proposed robotic gripper design and control methodology was experimentally evaluated. The minimum width of the insertion space required to grasp an object is 4 mm (1 mm, when using a strategy).
translated by 谷歌翻译
触觉感应是执行灵巧操纵任务的机器人的基本能力。虽然相机,LIDAR和其他远程传感器可以在全球和立即评估场景,但触觉传感器可以减少它们的测量不确定性,并在往复对象和机器人之间获得局部物理交互的信息,这通常不能通过遥感。触觉传感器可以分为两个主要类别:电子触觉皮肤和基于相机的光学触觉传感器。前者是薄薄的并且可以安装在不同的身体部位上,而后者呈现更棱柱形状并具有更高的感测分辨率,具有良好的优势,可以用作机器人手指或指尖。这种光学触觉传感器之一是我们的Geltip传感器,其成形为手指,并且可以在其表面的任何位置感接触。这样,Geltip传感器能够从所有方向上检测触点,如人的手指。为了捕获这些触点,它使用安装在其基部的相机来跟踪覆盖其空心,刚性和透明体的不透明弹性体的变形。由于这种设计,配备盖施电流传感器的夹具能够同时监测其掌握内外的触点。使用该传感器进行的实验表明了触点是如何定位的,更重要的是,利用杂波中的Dexterous操纵任务中的全面触摸感测的优点,甚至可能是必要的,其中触点可能发生在手指的任何位置。可以在HTTPS://Danfergo.github.io/geltip/中找到制造Geltip传感器的所有材料
translated by 谷歌翻译
软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,从而使精确的操纵具有挑战性。我们提出视觉压力估计与控制(VPEC),这种方法可以使用外部摄像头的RGB图像施加的软握力施加的压力。当气动抓地力和肌腱握力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的拉伸RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译
我们提出了一个本体感受的远程操作系统,该系统使用反身握把算法来增强拾取任务的速度和稳健性。该系统由两个使用准直接驱动驱动的操纵器组成,以提供高度透明的力反馈。末端效应器具有双峰力传感器,可测量3轴力信息和2维接触位置。此信息用于防滑和重新磨碎反射。当用户与所需对象接触时,重新抓紧反射将抓地力的手指与对象上的抗肌点对齐,以最大程度地提高抓握稳定性。反射仅需150毫秒即可纠正用户选择的不准确的grasps,因此用户的运动仅受到Re-Grasp的执行的最小干扰。一旦建立了抗焦点接触,抗滑动反射将确保抓地力施加足够的正常力来防止物体从抓地力中滑出。本体感受器的操纵器和反射抓握的结合使用户可以高速完成远程操作的任务。
translated by 谷歌翻译
在过去的几十年中,出现了一种趋势,指出在可移动,可编程和可转换机制中利用结构不稳定性。受钢制发夹的启发,我们将面板组件与可靠的结构相结合,并使用半刚性塑料板建造合规的拍打机构,并将其安装在束缚的气动软机器人鱼和无螺旋螺旋式的电动机驱动器上,以展示它的前所未有的优势。设计规则是根据理论和验证提出的。观察到与参考相比,气动鱼的游泳速度提高了两倍,对Untether Fish的进一步研究表明,对于不固定的兼容的游泳运动员,可损坏的速度为2.03 BL/S(43.6 cm/s),优于先前报告的最快的,其幅度为194%。这项工作可能预示着下一代符合下一代机器人技术的结构革命。
translated by 谷歌翻译
可变形的物体操纵(DOM)是机器人中的新兴研究问题。操纵可变形对象的能力赋予具有更高自主权的机器人,并承诺在工业,服务和医疗领域中的新应用。然而,与刚性物体操纵相比,可变形物体的操纵相当复杂,并且仍然是开放的研究问题。解决DOM挑战在机器人学的几乎各个方面,即硬件设计,传感,(变形)建模,规划和控制的挑战突破。在本文中,我们审查了最近的进步,并在考虑每个子场中的变形时突出主要挑战。我们论文的特殊焦点在于讨论这些挑战并提出未来的研究方向。
translated by 谷歌翻译
Applying suction grippers in unstructured environments is a challenging task because of depth and tilt errors in vision systems, requiring additional costs in elaborate sensing and control. To reduce additional costs, suction grippers with compliant bodies or mechanisms have been proposed; however, their bulkiness and limited allowable error hinder their use in complex environments with large errors. Here, we propose a compact suction gripper that can pick objects over a wide range of distances and tilt angles without elaborate sensing and control. The spring-inserted gripper body deploys and conforms to distant and tilted objects until the suction cup completely seals with the object and retracts immediately after, while holding the object. This seamless deployment and retraction is enabled by connecting the gripper body and suction cup to the same vacuum source, which couples the vacuum picking and retraction of the gripper body. Experimental results validated that the proposed gripper can pick objects within 79 mm, which is 1.4 times the initial length, and can pick objects with tilt angles up to 60{\deg}. The feasibility of the gripper was verified by demonstrations, including picking objects of different heights from the same picking height and the bin picking of transparent objects.
translated by 谷歌翻译