This letter proposes a novel single-fingered reconfigurable robotic gripper for grasping objects in narrow working spaces. The finger of the developed gripper realizes two configurations, namely, the insertion and grasping modes, using only a single motor. In the insertion mode, the finger assumes a thin shape such that it can insert its tip into a narrow space. The grasping mode of the finger is activated through a folding mechanism. Mode switching can be achieved in two ways: switching the mode actively by a motor, or combining passive rotation of the fingertip through contact with the support surface and active motorized construction of the claw. The latter approach is effective when it is unclear how much finger insertion is required for a specific task. The structure provides a simple control scheme. The performance of the proposed robotic gripper design and control methodology was experimentally evaluated. The minimum width of the insertion space required to grasp an object is 4 mm (1 mm, when using a strategy).
translated by 谷歌翻译
This study proposed a novel robotic gripper that can achieve grasping and infinite wrist twisting motions using a single actuator. The gripper is equipped with a differential gear mechanism that allows switching between the grasping and twisting motions according to the magnitude of the tip force applied to the finger. The grasping motion is activated when the tip force is below a set value, and the wrist twisting motion is activated when the tip force exceeds this value. "Twist grasping," a special grasping mode that allows the wrapping of a flexible thin object around the fingers of the gripper, can be achieved by the twisting motion. Twist grasping is effective for handling objects with flexible thin parts, such as laminated packaging pouches, that are difficult to grasp using conventional antipodal grasping. In this study, the gripper design is presented, and twist grasping is analyzed. The gripper performance is experimentally validated.
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
用单个机器人手抓住各种大小和形状的各种物体是一项挑战。为了解决这个问题,我们提出了一只名为“ F3手”的新机器人手,受人食指和拇指的复杂运动的启发。 F3手试图通过将平行运动手指和旋转运动手指与自适应功能结合在一起来实现复杂的人类样运动。为了确认我们的手的性能,我们将其附加到移动操纵器 - 丰田人支持机器人(HSR),并进行了掌握实验。在我们的结果中,我们表明它能够掌握所有YCB对象(总共82个),包括外径的垫圈小至6.4mm。我们还构建了一个用于直观操作的系统,并使用3D鼠标掌握了另外24个对象,包括小牙签和纸夹以及大型投手和饼干盒。即使在不精确的控制和位置偏移量下,F3手也能够在抓住98%的成功率方面取得成功率。此外,由于手指的适应性功能,我们展示了F3手的特征,这些特征促进了在理想的姿势中抓住诸如草莓之类的软物体。
translated by 谷歌翻译
Grasping是实际应用中大多数机器人的重要能力。软机器人夹具被认为是机器人抓握的关键部分,并在对象几何形状方差方差的高度和稳健性方面引起了相当大的关注;然而,它们仍然受到相应的传感能力和致动机制的限制。我们提出了一种新型软夹具,看起来像碎碎的碎碎片,其具有综合模具技术制造的柔顺的双稳态机构,纯粹机械地实现感测和致动。特别地,所提出的夹持器中的卡通双稳态结构允许我们降低机构的复杂性,控制,感测设计,因为抓握和感测行为是完全被动的。一旦夹持器的触发位置触及物体并施加足够的力,抓握行为就会自动激励。为了用各种型材抓住物体,所提出的粮食软夹具(GSG)设计为能够包封,夹紧和持续爪。夹具由腔掌,棕榈帽和三个手指组成。首先,分析夹具的设计。然后,在构造理论模型之后,进行有限元(FE)仿真以验证构建的模型。最后,进行了一系列掌握实验,以评估所提出的夹持器对抓握和感测的卡通行为。实验结果说明了所提出的夹持器可以操纵各种柔软和刚性物体,并且即使它承担外部干扰,也可以保持稳定。
translated by 谷歌翻译
与传统的刚性机器人相比,由于合规性,安全性和低成本,软机器人由于其优点而引起了越来越多的关注。作为软机器人的重要组成部分,软机器人夹具还显示出其优越的同时抓住具有不规则形状的物体。已经进行了最近的研究,以通过调整可变有效长度(VEL)来改善其抓握性能。然而,通过多室设计或可调刚度形状记忆材料实现的Vel需要复杂的气动电路设计或耗时的相变过程。这项工作提出了一种由3D印刷灯丝,忍者克朗的折叠式软机器人执行器。它是通过高速模型进行实验测试和表示的。进行数学和有限元建模,以研究所提出的软致动器的弯曲行为。此外,提出了一种拮抗约束机制来实现VEL,并且实验表明实现了更好的符合性。最后,设计了一种双模夹具,以展示Vel对抓取性能的进步。
translated by 谷歌翻译
意识到高性能软机器人抓手是具有挑战性的,因为软执行器和人造肌肉的固有局限性。尽管现有的软机器人抓手表现出可接受的性能,但他们的设计和制造仍然是一个空旷的问题。本文探索了扭曲的弦乐执行器(TSA),以驱动软机器人抓手。 TSA已被广泛用于众多机器人应用中,但它们包含在软机器人中是有限的。提议的抓手设计灵感来自人类手,四个手指和拇指。通过使用拮抗剂TSA,在手指中实现了可调刚度。手指的弯曲角度,驱动速度,阻塞力输出和刚度调整是实验表征的。抓手能够在Kapandji测试中获得6分,并且还可以达到33个Feix Grasp Grasp分类法中的31个。一项比较研究表明,与其他类似抓手相比,提出的抓手表现出等效或卓越的性能。
translated by 谷歌翻译
我们提出了一个本体感受的远程操作系统,该系统使用反身握把算法来增强拾取任务的速度和稳健性。该系统由两个使用准直接驱动驱动的操纵器组成,以提供高度透明的力反馈。末端效应器具有双峰力传感器,可测量3轴力信息和2维接触位置。此信息用于防滑和重新磨碎反射。当用户与所需对象接触时,重新抓紧反射将抓地力的手指与对象上的抗肌点对齐,以最大程度地提高抓握稳定性。反射仅需150毫秒即可纠正用户选择的不准确的grasps,因此用户的运动仅受到Re-Grasp的执行的最小干扰。一旦建立了抗焦点接触,抗滑动反射将确保抓地力施加足够的正常力来防止物体从抓地力中滑出。本体感受器的操纵器和反射抓握的结合使用户可以高速完成远程操作的任务。
translated by 谷歌翻译
本文介绍了BRL/PISA/IIT(BPI)SOFTHAND:单个执行器驱动的,低成本,3D打印,肌腱驱动的机器人手,可用于执行一系列掌握任务。基于PISA/IIT SOFTHAND的自适应协同作用,我们设计了一种新的关节系统和肌腱路由,以促进软化和适应性的协同作用,这有助于我们平衡手的耐用性,负担能力和握住手的性能。这项工作的重点在于该杂种的设计,仿真,协同作用和抓握测试。新颖的小块是根据连锁,齿轮对和几何约束机制设计和印刷的,可以应用于大多数肌腱驱动的机器人手。我们表明,机器人手可以成功地掌握和提起各种目标对象并适应复杂的几何形状,从而反映了软化和适应性协同的成功采用。我们打算为手的设计开放源,以便可以在家用3D打印机上廉价地构建。有关更多详细信息:https://sites.google.com/view/bpi-softhandtactile-group-bri/brlpisaiit-softhand-design
translated by 谷歌翻译
Robotic tactile sensing provides a method of recognizing objects and their properties where vision fails. Prior work on tactile perception in robotic manipulation has frequently focused on exploratory procedures (EPs). However, the also-human-inspired technique of in-hand-manipulation can glean rich data in a fraction of the time of EPs. We propose a simple 3-DOF robotic hand design, optimized for object rolling tasks via a variable-width palm and associated control system. This system dynamically adjusts the distance between the finger bases in response to object behavior. Compared to fixed finger bases, this technique significantly increases the area of the object that is exposed to finger-mounted tactile arrays during a single rolling motion (an increase of over 60% was observed for a cylinder with a 30-millimeter diameter). In addition, this paper presents a feature extraction algorithm for the collected spatiotemporal dataset, which focuses on object corner identification, analysis, and compact representation. This technique drastically reduces the dimensionality of each data sample from 10 x 1500 time series data to 80 features, which was further reduced by Principal Component Analysis (PCA) to 22 components. An ensemble subspace k-nearest neighbors (KNN) classification model was trained with 90 observations on rolling three different geometric objects, resulting in a three-fold cross-validation accuracy of 95.6% for object shape recognition.
translated by 谷歌翻译
Grasping is an incredible ability of animals using their arms and limbs in their daily life. The human hand is an especially astonishing multi-fingered tool for precise grasping, which helped humans to develop the modern world. The implementation of the human grasp to virtual reality and telerobotics is always interesting and challenging at the same time. In this work, authors surveyed, studied, and analyzed the human hand-grasping behavior for the possibilities of haptic grasping in the virtual and remote environment. This work is focused on the motion and force analysis of fingers in human hand grasping scenarios and the paper describes the transition of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtual reality.
translated by 谷歌翻译
Applying suction grippers in unstructured environments is a challenging task because of depth and tilt errors in vision systems, requiring additional costs in elaborate sensing and control. To reduce additional costs, suction grippers with compliant bodies or mechanisms have been proposed; however, their bulkiness and limited allowable error hinder their use in complex environments with large errors. Here, we propose a compact suction gripper that can pick objects over a wide range of distances and tilt angles without elaborate sensing and control. The spring-inserted gripper body deploys and conforms to distant and tilted objects until the suction cup completely seals with the object and retracts immediately after, while holding the object. This seamless deployment and retraction is enabled by connecting the gripper body and suction cup to the same vacuum source, which couples the vacuum picking and retraction of the gripper body. Experimental results validated that the proposed gripper can pick objects within 79 mm, which is 1.4 times the initial length, and can pick objects with tilt angles up to 60{\deg}. The feasibility of the gripper was verified by demonstrations, including picking objects of different heights from the same picking height and the bin picking of transparent objects.
translated by 谷歌翻译
大多数空中操纵器都使用串行刚性链接设计,在操纵过程中启动接触时会导致大力,并可能导致飞行稳定性难度。连续操作器的遵守情况可能会改善这种限制。为了实现这一目标,我们介绍了空中无人机的紧凑,轻巧和模块化电缆驱动的连续操作的新颖设计。然后,我们为其运动学,静电和刚度(合规性)得出一个完整的建模框架。该框架对于将操纵器集成到空中无人机至关重要。最后,我们报告了硬件原型的初步实验验证,从而提供了有关其操纵可行性的见解。未来的工作包括对拟议的连续操作机与空中无人机的集成和测试。
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
提出了一种能够改变形状中空飞行的新型Quadcopter,允许在四种配置中进行操作,其中包含持续的悬停在三个配置中。这是实现的,而不需要超出Quadcopter典型的四个电动机的执行器。通过自由旋转铰链来实现变形,使车臂通过减少或逆转推力向下折叠。放置在车辆的控制输入上的约束防止臂意外折叠或展开。这允许使用现有的四转器控制器和轨迹生成算法,只有最小的增加的复杂性。对于我们在悬停的实验载体中,我们发现这些约束导致车辆可以产生的最大偏航扭矩的36%减少,但不会导致最大推力或卷和螺距扭矩的减少。实验结果表明,对于典型的操纵,增加的限制对轨迹跟踪性能的影响忽略不计。最后,示出了改变配置的能力,使车辆能够在悬挂导线上移动小通道,并且执行有限的抓取任务。
translated by 谷歌翻译
从一个或多个未分类桩中挑选一个或多个物体对于机器人系统而言仍然是不平凡的。当桩由包含彼此纠缠的单个项目的颗粒材料(GM)组成时,尤其如此,导致挑选出更多的选择。这种容易发生的GM的关键特征之一是从桩中的主要物体延伸的突起存在。这项工作描述了后者在引起机械纠缠及其对选择一致性的影响方面所扮演的角色。 IT报告了实验,其中采摘具有不同突出长度(PLS)的GMS导致挑选质量差异增加了76%,这表明PL是采摘策略设计中的一项信息功能。此外,为了应对这种效果,它提出了一种新的传播(SNP)方法,可大大减少纠结,从而使选择更加一致。与试图从桩中的无缠结点进行选择的先前方法相比,提出的方法导致选择误差(PE)的降低高达51%,并显示出对先前看不见的GMS的良好概括。
translated by 谷歌翻译
四倍的机器人通常配备额外的手臂进行操作,对价格和重量产生负面影响。另一方面,腿部运动的要求意味着,这种机器人的腿通常具有执行操作所需的扭矩和精度。在本文中,我们介绍了一种新颖的设计,该设计针对一个小型四倍的机器人,配备了两个受甲壳类动物和指关节walker前的前肢启发的腿部安装机。通过使用腿部已经存在的执行器,我们只能使用每个肢体额外的3个电动机来实现操纵。该设计使相对于腿部电动机的小型且廉价的执行器的使用,从而进一步降低了成本和重量。由于集成的电缆/皮带轮系统,惯性的瞬间对腿的影响很小。正如我们在一套远程操作实验中所显示的那样,机器人能够执行单个和双LIMB操纵,并在操纵模式之间过渡。拟议的设计的性能与额外的手臂相似,同时称重和成本减少了每个操纵器的5倍,并可以完成需要2个操纵器的任务。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
将包装从存储设施运送到消费者前门的物流通常采用高度专业的机器人,通常会将子任务分配到不同的系统,例如,操纵器臂进行分类和轮式车辆进行交付。最近的努力试图通过腿部和人形机器人进行统一的方法。但是,这些解决方案占据了大量空间,从而减少了可以适合运送车辆的包装数量。结果,这些庞大的机器人系统通常会降低可伸缩性和并行任务的潜力。在本文中,我们介绍了Limms(锁存智能模块化移动系统),以解决典型的最后一英里交付的操纵和交付部分,同时保持最小的空间足迹。 Limms是一种对称设计的,6型自由度(DOF)的类似于附件的机器人,两端都带有轮子和闩锁机构。通过将锁在表面上并锚定在一端,Limms可以充当传统的6多型操纵器臂。另一方面,多个lims可以锁在一个盒子上,并且像腿部机器人系统一样行为,包装是身体。在运输过程中,与传统的机器人系统相比,LIMM紧紧地折叠起来,占用的空间要少得多。一大批limms单元可以安装在单个送货工具内部,为新的交付优化和混合计划方法开放,从未做过。在本文中,使用硬件原型研究和呈现了LIMM的可行性,以及在典型的最后一英里交付中的一系列子任务的仿真结果。
translated by 谷歌翻译