软机械设计与控制的共同优化需要快速实现现实验证的快速手段。现有的创建管道不允许软机器的SWIFT原型,以便快速测试各种设计配置和控制策略。这项工作提出了一种用于快速迭代设计和制造小型化模块化硅氧烷弹性体的机器人鱼类的管道。模块化设计允许具有不同配置的机器人鱼类简单快速迭代,以帮助目前对设计优化方法的开发的研究。所提出的机器人鱼可以用作标准化的测试平台,可以在哪些性能度量如推力和运动范围之类的标准化测试平台。我们进一步展示了能够测量输入压力,尾部变形和推力的水下评估设置的设计。制造和实验评估具有不同刚度和内部气动室配置的多种机器人鱼原型。机器人的灵活模块化设计原理及其评估平台解锁了更有效的软机器人鱼类的可能性,将来有利于未来设计优化和水下勘探的研究。
translated by 谷歌翻译
Accurate simulation of soft mechanisms under dynamic actuation is critical for the design of soft robots. We address this gap with our differentiable simulation tool by learning the material parameters of our soft robotic fish. On the example of a soft robotic fish, we demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters from quasi-static data via differentiable simulation and apply it to the prediction of dynamic performance. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different robotic fish tail designs. We show that our method is compatible with varying internal geometry of the actuators, such as the number of hollow cavities. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to millimeter-accuracy and within 3 percent error normalized to actuator length. We provide a differentiable and robust estimate of the thrust force using a neural network thrust predictor; this estimate allows for accurate modeling of our experimental setup measuring bollard pull. This work presents a prototypical hardware and simulation problem solved using our differentiable framework; the framework can be applied to higher dimensional parameter inference, learning control policies, and computational design due to its differentiable character.
translated by 谷歌翻译
软机器人技术有可能改变机器人运动,特别是软机器人游泳者提供了一种微创和自适应的解决方案,以探索和保存我们的海洋。不幸的是,当前的软机器人游泳者非常劣于进化的生物游泳者,尤其是在可控性,效率,可操作性和寿命方面。此外,设计软机器人所需的乏味的迭代制造和经验测试阻碍了它们的优化。在这项工作中,我们通过为设计和制造配备静电驱动的软机器人游泳者提供高效且直接的管道来应对这一挑战。我们简化了允许快速增材制造的过程,并显示如何使用可区分的模拟将简化模型与机器人游泳器的真实变形匹配。我们通过改变游泳者的拮抗肌肉的电压和驱动频率来对制造的游泳者进行多个实验。我们展示了在液态油中移动时的电压和频率如何改变游泳者的运动速度,并在前进的游泳速度下观察到明显的最佳选择。我们提出的可区分模拟模型具有各种下游应用,例如游泳者的控制和形状优化;通过我们的SIM到现实匹配,可以将优化结果直接映射回真实机器人。
translated by 谷歌翻译
结肠镜检查被认为是下层胃肠道(GI)癌症筛查的黄金标准,考虑到降低推荐的筛查年龄,全世界的筛查计划。尽管如此,由于结肠镜和结肠壁之间发生的力,常规结肠镜检查可能会给患者带来不适。已经提出了机器人解决方案,以减少不适感,并提高可访问性和图像质量。为了解决传统和机器人结肠镜检查的局限性,在本文中,我们介绍了软屏幕系统,这是一种基于Eversion导航的新型软性形状胶囊机器人,用于内窥镜检查。多个轨道围绕着系统的身体。这些轨道是由单个电动机搭配蠕虫齿轮和内部刚性底盘的Evert驱动的,从而使基于完整的轨道导航。两个可充气的环形腔室封闭了这个刚性底盘并穿过轨道,使它们在膨胀时取代。该位移可用于调节与周围壁的接触,从而实现牵引力控制并调整整体直径以匹配本地管腔尺寸。在这项工作中介绍了第一个束缚原型在2:1尺度下的系带原型的设计。实验结果显示了不同管腔直径和曲率的有效导航能力,为能够强大导航和可靠控制成像的新型机器人铺平了道路,并具有超出结肠镜检查的应用,包括胃镜检查和胶囊内窥镜检查。
translated by 谷歌翻译
尽管有多样化的环境进展,但蛇机器人仍然远远落后于穿越大障碍物的复杂的3-D地形。这是由于缺乏对如何控制3-D体弯曲以推动地形特征来产生和控制推进的理解。生物学研究表明,总体蛇使用接触力传感来实时调整身体弯曲。然而,由于缺乏对其力传感器官如何工作的基本知识,研究蛇中的这种感觉调制的力量控制是挑战性的。在这里,我们采取了一种robophysics方法来进行进步,从开发一个能够使用接触力感测的3-D体弯曲的蛇机器人来实现,以实现系统的运动实验和力量测量。通过两个开发和测试迭代,我们创建了一个12段机器人,其中36个压电板传感器分布在所有段上,具有符合30 Hz的采样频率的符合壳体。机器人测量接触力,同时使用具有高可重复性的垂直弯曲来横穿大障碍,实现为提供系统实验的平台的目标。最后,考虑到压电传感器的粘弹性行为,我们探讨了基于模型的校准,这将为未来的研究有用。
translated by 谷歌翻译
软致动器在符合性和形态方面表现出具有很大的优势,用于操纵细腻物体和在密闭空间中的检查。对于可以提供扭转运动的软致动器有一个未满足的需要。放大工作空间并增加自由度。为此目标,我们呈现由硅胶制成的折纸启发的软充气执行器(OSPas)。原型可以输出多于一个旋转的旋转(高达435 {\ DEG}),比以前的同行更大。我们描述了设计和制作方法,构建了运动学模型和仿真模型,并分析和优化参数。最后,我们通过整合到能够同时抓住和提升脆弱或扁平物体的夹具,这是一种能够与扭转致动器的直角拾取和放置物品的多功能机器人,以及柔软的蛇通过扭转致动器的扭转能够改变姿态和方向的机器人。
translated by 谷歌翻译
软机器人操纵器对于在受限环境中的医疗干预或工业检查等一系列应用都具有吸引力。文献中已经提出了无数的软机器人操纵器,但是它们的设计往往相对相似,并且通常提供相对较低的力。这限制了他们可以携带的有效载荷,因此限制了它们的可用性。在公共框架下不可用不同设计的力的比较,并且设计具有不同的直径和功能,使它们难以比较。在本文中,我们介绍了一种软机器人操纵器的设计,该设计的优化为最大化其力,同时尊重典型的应用程序约束,例如大小,工作区,有效负载能力和最大压力。此处介绍的设计具有一个优势,即它变为最佳设计,因为它被加压到朝不同方向移动,这会导致较高的横向力。该机器人是使用一组原理设计的,因此可以适应其他应用程序。我们还为软机器人操纵器提供了非二维分析,并将其应用于此处提出的设计的性能与文献中其他设计的性能。我们表明,我们的设计比同一类别中的其他设计具有更高的力量。实验结果证实了我们提出的设计的较高力量。
translated by 谷歌翻译
Everting, soft growing vine robots benefit from reduced friction with their environment, which allows them to navigate challenging terrain. Vine robots can use air pouches attached to their sides for lateral steering. However, when all pouches are serially connected, the whole robot can only perform one constant curvature in free space. It must contact the environment to navigate through obstacles along paths with multiple turns. This work presents a multi-segment vine robot that can navigate complex paths without interacting with its environment. This is achieved by a new steering method that selectively actuates each single pouch at the tip, providing high degrees of freedom with few control inputs. A small magnetic valve connects each pouch to a pressure supply line. A motorized tip mount uses an interlocking mechanism and motorized rollers on the outer material of the vine robot. As each valve passes through the tip mount, a permanent magnet inside the tip mount opens the valve so the corresponding pouch is connected to the pressure supply line at the same moment. Novel cylindrical pneumatic artificial muscles (cPAMs) are integrated into the vine robot and inflate to a cylindrical shape for improved bending characteristics compared to other state-of-the art vine robots. The motorized tip mount controls a continuous eversion speed and enables controlled retraction. A final prototype was able to repeatably grow into different shapes and hold these shapes. We predict the path using a model that assumes a piecewise constant curvature along the outside of the multi-segment vine robot. The proposed multi-segment steering method can be extended to other soft continuum robot designs.
translated by 谷歌翻译
人类无法访问许多空间,机器人可以帮助传感器和设备提供。这些空间中有许多包含三维通道和不均匀的地形,这些通道对机器人设计和控制构成了挑战。通过同时进行的远处和体材料反转移动的环形机器人有望在这些类型的空间中导航。我们提出了一种新型的柔软的环形机器人,该机器人在充满空气的膜内使用电动设备推动自己推动自己。我们的机器人只需要一个控制信号即可移动,可以符合其环境,并且可以垂直爬上电动机扭矩,该电动机与用来支撑机器人对环境的力无关。我们得出并验证了其运动所涉及的力的模型,并演示了机器人导航迷宫和攀登管道的能力。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
后空飞行是一种水生昆虫,能够在水下调节其浮力。它的腹部被血红蛋白细胞覆盖,用于啮合和释放氧气,可逆地。进入水后,飞捕口在其腹部的超疏水毛状结构中的气泡进行呼吸。然而,这种泡沫可以通过来自腹部血红蛋白细胞的调节氧气流动来改变其体积。通过这种方式,它可以达到中性浮力而无需进一步的能量消耗。在这项研究中,我们开发了一种小,厘米的刻度,通过受控成核和释放微泡的自动浮力调节来发展一小厘米。气泡通过电解,直接在板载电极上直接生长,通过低电压调节。我们使用3D打印来引入三维气泡诱捕的蜂窝结构,以创造一个稳定的外部气体储层。为了减少浮力力,气泡通过线性机械振动释放,从机器人的身体分离。通过压力传感和比例整体衍生控制回路机构,机器人自动调节其浮力,以在几秒钟内水下达到中性浮动。这种机制可以促进更换传统和物理上更大的浮力调节系统,如活塞和加压罐,并能够实现自主水下车辆的小型化。
translated by 谷歌翻译
动态运动是机器人武器的关键特征,使他们能够快速有效地执行任务。在任务空间运行时,软连续式操纵器目前尚未考虑动态参数。这种缺点使现有的软机器人缓慢并限制了他们处理外力的能力,特别是在物体操纵期间。我们通过使用动态操作空间控制来解决此问题。我们的控制方法考虑了3D连续体臂的动态参数,并引入了新模型,使多段软机械师能够在任务空间中顺利运行。先前仅为刚性机器人提供的先进控制方法现在适用于软机器;例如,潜在的场避免以前仅针对刚性机器人显示,现在延伸到软机器人。使用我们的方法,柔软的机械手现在可以实现以前不可能的各种任务:我们评估机械手在闭环控制实验中的性能,如拾取和障碍物避免,使用附加的软夹具抛出物体,并通过用掌握的粉笔绘制来故意将力施加到表面上。除了新的技能之外,我们的方法还提高了59%的跟踪精度,并将速度提高到19.3的尺寸,与最新的任务空间控制相比。通过这些新发现能力,软机器人可以开始挑战操纵领域的刚性机器人。我们固有的安全和柔顺的软机器人将未来的机器人操纵到一个不用的设置,其中人和机器人并行工作。
translated by 谷歌翻译
本文提出了一个紧凑的系统OpenPneu,以支持软机器人多腔的气动驱动。系统中使用微型泵来生成气流,因此不需要额外的输入,因为需要压缩空气。我们的系统执行模块化设计以提供良好的可扩展性,这已在具有十个空气通道的原型上证明。OpenPNEU的每个空气通道都配备了通货膨胀和通气功能,可提供从正到负的全范围压力供应,最大流速为1.7 L/min。我们的系统内置了对压力的高精度闭环控制,以实现稳定而有效的动态性能。提供了Python中的开源控制接口和API。我们还证明了OpenPneu在三个软机器人系统上的功能,最多10个腔室。
translated by 谷歌翻译
自然界中发现的大多数软体体生物都存在于水下环境中。研究水下软机器人的运动和控制也很有帮助。但是,由于难以设计,制造和防水,因此无法使用容易获得的水下软机器人系统。此外,由于需要密封的电子包,因此潜水机器人通常没有可配置的组件。这项工作介绍了由液压执行器驱动的潜水软机器人手臂的开发,该臂主要由3D可打印的零件组成,可以在短时间内组装。此外,它的模块化设计可实现多种形状配置和轻松交换软执行器。作为探索该系统上机器学习控制算法的第一步,开发,训练和评估了两个深神网络模型,以估算机器人的前进和逆运动学。用于控制这种水下软机器人臂的技术可以帮助促进对如何控制软机器人系统的理解。
translated by 谷歌翻译
许多生物,包括各种种类的蜘蛛和毛毛虫,都会改变其形状以切换步态并适应不同的环境。从可拉伸电路到高度变形的软机器人,最近的技术进步已经开始使变化的机器人成为可能。但是,目前尚不清楚应如何以及何时发生变化以及可以获得哪些功能,从而导致各种未解决的设计和控制问题。为了开始解决这些问题,我们在这里模拟,设计和构建一个软机器人,该机器人利用形状变化来在平坦和倾斜的表面上实现运动。在模拟中对该机器人进行建模,我们在两个环境中探索了它的功能,并证明了特定于环境特定形状和步态的存在,这些形状和步态成功地转移到了物理硬件中。我们发现,改变形状的机器人在模拟和现实中比等效但不正确的机器人更好地遍历这些环境。
translated by 谷歌翻译
软气动执行器已经在许多软机器人系统中看到了应用,其压力驱动的性质提出了控制其运动的独特挑战和机会。在这项工作中,我们提出了一个新概念:通过末端几何形状设计和控制气动执行器。我们演示了一个新颖的执行器类,称为折叠气动人造肌肉(Foldpam),该肌肉具有一个薄纤维的空气袋,两侧对称折叠。改变执行器的折叠部分会改变最终约束,从而改变力 - 应变关系。我们通过测量具有各种长度和折叠量的单个foldpam单元的力 - 应变关系来实验研究这一变化。除静态几何单元外,驱动的FOLDPAM设备还设计为产生末端几何形状的连续,按需调整,从而实现闭环位置控制,同时保持恒定压力。使用设备的实验表明几何控制允许进入力 - 应变平面上的不同区域,并且闭环几何控制可以在驱动范围的0.5%以内实现误差。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
脑出血(ICH)是最致命的中风子类型,死亡率高达52%。由于颅骨切开术引起的潜在皮质破坏,保守管理(注意等待)历史上一直是一种常见的治疗方法。最小的侵入性疏散最近已成为一种可公认的治疗方法,用于体积30-50 mL的深座性血肿的患者,但适当的可视化和工具敏感性仍然受到常规内窥镜方法的限制,尤其是较大的血肿体积(> 50 mL)。在本文中,我们描述了Aspihre的发展(脑部出血机器人疏散的手术平台),这是有史以来的第一个同心管机器人,该机器人使用现成的塑料管来进行MR引导ICH撤离,改善工具敏感性和程序可视化。机器人运动学模型是基于基于校准的方法和试管力学建模开发的,使模型可以考虑可变曲率和扭转偏转。使用可变增益PID算法控制旋转精度为0.317 +/- 0.3度。硬件和理论模型在一系列系统的基准和MRI实验中进行了验证,导致1.39 +\ -0.54 mm的管尖的位置精度。验证靶向准确性后,在MR引导的幻影凝块疏散实验中测试了机器人的疏散功效。该机器人能够在5分钟内撤离最初38.36 mL的凝块,使残留血肿为8.14 mL,远低于15 mL指南,表明良好的后疏散临床结果。
translated by 谷歌翻译
电驱动的软机器人能够实现小型和灯体,以及环境兼容性,各种运动和安全操作。特别地,静电致动器(例如,压电致动器)快速响应。但是,可扩展的无缝集成和不可阻止操作的方法仍不清楚。此外,软体自然建模,包括环境互动,是一个长期存在的挑战。此外,需要探索更多的机器机制。在本文中,我们设计了模型,建模并展示了一个软机器人,这是第一次开始解决所有这些问题。它具有平面结构的五个执行器的线性阵列,用于集成和自由操作的开门。通过依靠姿势自我调整,设计和验证了一种新的九寸式捕获的爬行运动机制。通过实验开发并验证了包括井解释机器人运动的压电,重力和地面相互作用的第一分析软体模型。我们展示了机器人的前向和向后运动,并探索了有效载荷和驾驶速度的影响:每循环的1.2 mm运动,在移动时可以携带高达200克的有效载荷(16倍体重)。这项工作为复杂的未知环境中的快速响应机器人铺平了道路。
translated by 谷歌翻译