空气污染是世界上死亡率最重要的原因之一。监测空气污染对于了解健康与污染物之间的联系并确定干预区域很有用。这种监视很昂贵,因此重要的是要尽可能有效地放置传感器。事实证明,贝叶斯优化对选择传感器位置有用,但通常依赖于忽略空气污染统计结构的内核功能,例如污染趋势沿盛行的风向传播。我们描述了两个新的风向内核,并研究了它们在使用贝叶斯优化的最大污染位置主动学习位置的任务中的优势。
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
本文讨论了具有丰富记录数据的域中的政策选择问题,但互动预算有限。解决此问题将在行业,机器人和推荐领域中安全评估和部署离线强化学习政策等。已经提出了几种违规评估(OPE)技术以评估仅使用记录数据的策略的值。然而,OPE的评估与真实环境中的完整在线评估之间仍然存在巨大差距。然而,在实践中通常不可能进行大量的在线互动。为了克服这个问题,我们介绍了\ emph {主动脱机策略选择} - 一种新的顺序决策方法,将记录数据与在线交互相结合,以识别最佳策略。这种方法使用ope估计来热启动在线评估。然后,为了利用有限的环境相互作用,我们决定基于具有表示政策相似性的内核函数的贝叶斯优化方法来评估哪个策略。我们使用大量候选政策的多个基准,以表明所提出的方法提高了最先进的OPE估计和纯在线策略评估。
translated by 谷歌翻译
线性系统发生在整个工程和科学中,最著名的是差分方程。在许多情况下,系统的强迫函数尚不清楚,兴趣在于使用对系统的嘈杂观察来推断强迫以及其他未知参数。在微分方程中,强迫函数是自变量(通常是时间和空间)的未知函数,可以建模为高斯过程(GP)。在本文中,我们展示了如何使用GP内核的截断基础扩展,如何使用线性系统的伴随有效地推断成GP的功能。我们展示了如何实现截短的GP的确切共轭贝叶斯推断,在许多情况下,计算的计算大大低于使用MCMC方法所需的计算。我们证明了普通和部分微分方程系统的方法,并表明基础扩展方法与数量适中的基础向量相近。最后,我们展示了如何使用贝叶斯优化来推断非线性模型参数(例如内核长度尺度)的点估计值。
translated by 谷歌翻译
高斯工艺(GPS)模型是具有由内核功能控制的电感偏差的功能丰富的分布。通过使用边际似然作为目标优化内核超参数来实现学习。这种称为II类型最大似然(ML-II)的经典方法产生了高参数的点估计,并继续成为培训GPS的默认方法。然而,这种方法在低估预测不确定性并且易于在有许多近似数目时易于过度拟合。此外,基于梯度的优化使ML-II点估计高度易受局部最小值的存在。这项工作提出了一种替代的学习过程,其中核心函数的超参数使用嵌套采样(NS)被边缘化,这是一种非常适合于复杂的多模态分布来采样的技术。我们专注于具有频谱混合物(SM)粒子的回归任务,并发现定量模型不确定性的原则方法导致在一系列合成和基准数据集中的预测性能中的大量收益。在这种情况下,还发现嵌套的抽样在汉密尔顿蒙特卡罗(HMC)上提供了速度优势,广泛认为是基于MCMC推断的金标准。
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
贝叶斯优化是一种强大的范例,可以根据稀缺和嘈杂的数据优化黑盒功能。通过从相关任务转移学习,可以进一步提高其数据效率。虽然最近的转移模型META-META-GERSED基于大量数据,但在利用高斯过程(GPS)的闭合形式的闭合形式(GPS)的低数据制度方法中具有优势。在这种环境中,已经提出了几种分析易行的转移模型后索,但这些方法的相对优势并不熟知。在本文中,我们对转移学习的分层GP模型提供了一个统一视图,这使我们能够分析方法之间的关系。作为分析的一部分,我们开发了一种新颖的封闭式GP转移模型,适合在复杂性方面的现有方法。我们评估了大规模实验中不同方法的性能,并突出了不同转移学习方法的优势和弱点。
translated by 谷歌翻译
尽管当黑框功能昂贵时,样品效率是使用贝叶斯优化的主要动机,但基于II型最大可能性(ML-II)的标准方法可能会失败,并且在小样本试验中导致令人失望的性能。本文提供了三个令人信服的理由,以采用完全贝叶斯优化(FBO)作为替代方案。首先,ML-II的失败比使用人为设置的现有研究所隐含的更普遍。其次,FBO比ML-II更健壮,而且健壮性的价格几乎是微不足道的。第三,FBO变得易于实施,并且足够快,可以实用。本文使用相关实验支持该论点,这些实验反映了有关模型,算法和软件平台的当前实践。由于收益似乎超过了成本,因此研究人员应考虑为其应用采用FBO,以防止可能浪费宝贵的研究资源的潜在失败。
translated by 谷歌翻译
自动化的HyperParameter优化(HPO)可以支持从业者在机器学习模型中获得峰值性能。然而,通常缺乏有价值的见解,以对不同的超参数对最终模型性能的影响。这种缺乏可解释性使得难以信任并理解自动化的HPO过程及其结果。我们建议使用可解释的机器学习(IML)从HPO中获得的实验数据与贝叶斯优化(BO)一起获得见解。 BO倾向于专注于具有潜在高性能配置的有前途的区域,从而诱导采样偏差。因此,许多IML技术,例如部分依赖曲线(PDP),承载产生偏置解释的风险。通过利用BO代理模型的后部不确定性,我们引入了具有估计置信带的PDP的变种。我们建议分区Quand参数空间以获得相关子区域的更自信和可靠的PDP。在一个实验研究中,我们为子区域内PDP的质量提高提供了定量证据。
translated by 谷歌翻译
Bayesian optimization (BO), while proved highly effective for many black-box function optimization tasks, requires practitioners to carefully select priors that well model their functions of interest. Rather than specifying by hand, researchers have investigated transfer learning based methods to automatically learn the priors, e.g. multi-task BO (Swersky et al., 2013), few-shot BO (Wistuba and Grabocka, 2021) and HyperBO (Wang et al., 2022). However, those prior learning methods typically assume that the input domains are the same for all tasks, weakening their ability to use observations on functions with different domains or generalize the learned priors to BO on different search spaces. In this work, we present HyperBO+: a pre-training approach for hierarchical Gaussian processes that enables the same prior to work universally for Bayesian optimization on functions with different domains. We propose a two-step pre-training method and analyze its appealing asymptotic properties and benefits to BO both theoretically and empirically. On real-world hyperparameter tuning tasks that involve multiple search spaces, we demonstrate that HyperBO+ is able to generalize to unseen search spaces and achieves lower regrets than competitive baselines.
translated by 谷歌翻译
贝叶斯优化(BO)与高斯工艺(GP)作为代理模型广泛用于优化分析且昂贵的函数。在本文中,我们提出了先前的卑鄙贝叶斯优化(Probo),以特定问题表达了古典博。首先,我们研究高斯过程的效果对古典博的收敛性的先前规范。我们发现前面的平均参数对所有先前组件之间的收敛具有最高影响。响应于此结果,我们将probo介绍为博的概括,其旨在使该方法更加强大地朝着先前的平均参数误操作。这是通过明确地通过先前的近无知模型进行GP来实现的实现。在核心的核心是一种新的采集功能,广义较低的置信度(GLCB)。我们在物质科学的真实问题上测试我们对古典博的方法,并观察Progo更快地收敛。关于多模式和WIGGLY目标功能的进一步实验证实了我们方法的优越性。
translated by 谷歌翻译
寻找可调谐GPU内核的最佳参数配置是一种非普通的搜索空间练习,即使在自动化时也是如此。这在非凸搜索空间上造成了优化任务,使用昂贵的来评估具有未知衍生的函数。这些特征为贝叶斯优化做好了良好的候选人,以前尚未应用于这个问题。然而,贝叶斯优化对这个问题的应用是具有挑战性的。我们演示如何处理粗略的,离散的受限搜索空间,包含无效配置。我们介绍了一种新颖的上下文方差探索因子,以及具有改进的可扩展性的新采集功能,与知识的采集功能选择机制相结合。通过比较我们贝叶斯优化实现对各种测试用例的性能,以及核心调谐器中的现有搜索策略以及其他贝叶斯优化实现,我们证明我们的搜索策略概括了良好的良好,并始终如一地以广泛的保证金更优于其他搜索策略。
translated by 谷歌翻译
贝叶斯方法是由于先验引起的正则化效应,这是对统计学的统计推断的流行选择,该效应可抵消过度拟合。在密度估计的背景下,标准的贝叶斯方法是针对后验预测。通常,后验预测的直接估计是棘手的,因此方法通常诉诸于后验分布作为中间步骤。然而,最近的递归预测copula更新的开发使得无需后近似即可执行可拖动的预测密度估计。尽管这些估计器在计算上具有吸引力,但它们倾向于在非平滑数据分布上挣扎。这在很大程度上是由于可能从中得出所提出的Copula更新的可能性模型的相对限制性形式。为了解决这一缺点,我们考虑了具有自回归似然分解和高斯过程的贝叶斯非参数模型,该模型在Copula更新中产生了数据依赖于数据的带宽参数。此外,我们使用自回归神经网络对带宽进行新的参数化,从而将数据映射到潜在空间中,从而能够捕获数据中更复杂的依赖性。我们的扩展增加了现有的递归贝叶斯密度估计器的建模能力,从而在表格数据集上实现了最新的结果。
translated by 谷歌翻译
高斯进程(GPS)是非参数贝叶斯模型,广泛用于各种预测任务。以前的工作在通过差异隐私(DP)向GPS增加了强大的隐私保护,仅限于仅保护预测目标的隐私(模型输出)而不是输入。我们通过为模型输入和输出引入DP保护而引入GPS来打破此限制。我们通过使用稀疏GP方法来实现这一目标,并在已知的诱导点上发布私有变分近似。近似协方差调整到大约占DP噪声的增加的不确定性。近似可用于使用标准稀疏GP技术计算任意预测。我们提出了一种使用应用于验证设置日志可能性的私有选择协议的超参数学习方法。我们的实验表明,考虑到足够量的数据,该方法可以在强大的隐私保护下产生准确的模型。
translated by 谷歌翻译
功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译
高斯流程已成为各种安全至关重要环境的有前途的工具,因为后方差可用于直接估计模型误差并量化风险。但是,针对安全 - 关键环境的最新技术取决于核超参数是已知的,这通常不适用。为了减轻这种情况,我们在具有未知的超参数的设置中引入了强大的高斯过程统一误差界。我们的方法计算超参数空间中的一个置信区域,这使我们能够获得具有任意超参数的高斯过程模型误差的概率上限。我们不需要对超参数的任何界限,这是相关工作中常见的假设。相反,我们能够以直观的方式从数据中得出界限。我们还采用了建议的技术来为一类基于学习的控制问题提供绩效保证。实验表明,界限的性能明显优于香草和完全贝叶斯高斯工艺。
translated by 谷歌翻译
高斯流程是许多灵活的统计和机器学习模型的关键组成部分。但是,由于需要倒转和存储完整的协方差矩阵,它们表现出立方计算的复杂性和高内存约束。为了解决这个问题,已经考虑了高斯流程专家的混合物,其中数据点被分配给独立专家,从而通过允许基于较小的局部协方差矩阵来降低复杂性。此外,高斯流程专家的混合物大大富含模型的灵活性,从而允许诸如非平稳性,异方差和不连续性等行为。在这项工作中,我们基于嵌套的蒙特卡洛采样器构建了一种新颖的推理方法,以同时推断门控网络和高斯工艺专家参数。与重要性采样相比,这大大改善了推断,尤其是在固定高斯流程不合适的情况下,同时仍然完全平行。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
信息理论的贝叶斯优化技术因其非洋流品质而变得越来越流行,以优化昂贵的黑盒功能。熵搜索和预测性熵搜索都考虑了输入空间中最佳的熵,而最新的最大值熵搜索则考虑了输出空间中最佳值的熵。我们提出了联合熵搜索(JES),这是一种新的信息理论采集函数,它考虑了全新的数量,即输入和输出空间上关节最佳概率密度的熵。为了结合此信息,我们考虑从幻想的最佳输入/输出对条件下的熵减少。最终的方法主要依赖于标准的GP机械,并去除通常与信息理论方法相关的复杂近似值。凭借最少的计算开销,JES展示了卓越的决策,并在各种任务中提供了信息理论方法的最新性能。作为具有出色结果的轻重量方法,JES为贝叶斯优化提供了新的首选功能。
translated by 谷歌翻译
许多昂贵的黑匣子优化问题对其输入敏感。在这些问题中,定位一个良好的设计区域更有意义,而不是一个可能的脆弱的最佳设计。昂贵的黑盒功能可以有效地优化贝叶斯优化,在那里高斯过程是在昂贵的功能之前的流行选择。我们提出了一种利用贝叶斯优化的强大优化方法,找到一种设计空间区域,其中昂贵的功能的性能对输入相对不敏感,同时保持质量好。这是通过从正在建模昂贵的功能的高斯进程的实现来实现这一点,并评估每个实现的改进。这些改进的期望可以用进化算法廉价地优化,以确定评估昂贵功能的下一个位置。我们描述了一个有效的过程来定位最佳预期改进。我们凭经验展示了评估候选不确定区域的昂贵功能的昂贵功能,该模型最不确定,或随机地产生最佳收敛与利用方案相比。我们在两个,五个和十个维度中说明了我们的六个测试功能的方法,并证明它能够优于来自文献的两种最先进的方法。我们还展示了我们的方法在4和8维中展示了两个真实问题,这涉及训练机器人臂,将物体推到目标上。
translated by 谷歌翻译