高斯流程已成为各种安全至关重要环境的有前途的工具,因为后方差可用于直接估计模型误差并量化风险。但是,针对安全 - 关键环境的最新技术取决于核超参数是已知的,这通常不适用。为了减轻这种情况,我们在具有未知的超参数的设置中引入了强大的高斯过程统一误差界。我们的方法计算超参数空间中的一个置信区域,这使我们能够获得具有任意超参数的高斯过程模型误差的概率上限。我们不需要对超参数的任何界限,这是相关工作中常见的假设。相反,我们能够以直观的方式从数据中得出界限。我们还采用了建议的技术来为一类基于学习的控制问题提供绩效保证。实验表明,界限的性能明显优于香草和完全贝叶斯高斯工艺。
translated by 谷歌翻译
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches.
translated by 谷歌翻译
Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.
translated by 谷歌翻译
考虑了建立UNKONWN地面真相函数值的样本外界限的问题。内核及其相关的希尔伯特空间是本文所采用的主要形式主义,以及一个观察模型,在该模型中,输出被有限的测量噪声损坏。噪声可以源于任何紧凑的分布,并且没有对可用数据进行独立假设。在这种情况下,我们显示计算紧密的,有限样本的不确定性范围等于求解参数四次约束线性程序。接下来,建立了我们方法的属性,并研究了其与另一种方法的关系。提出了数值实验,以说明如何在许多情况下应用理论,并将其与其他封闭形式的替代方案进行对比。
translated by 谷歌翻译
在安全关键方案中利用自主系统需要在存在影响系统动态的不确定性和黑匣子组件存在下验证其行为。在本文中,我们开发了一个框架,用于验证部分可观察到的离散时间动态系统,从给定的输入输出数据集中具有针对时间逻辑规范的未暗模式可分散的动态系统。验证框架采用高斯进程(GP)回归,以了解数据集中的未知动态,并将连续空间系统抽象为有限状态,不确定的马尔可夫决策过程(MDP)。这种抽象依赖于通过使用可重复的内核Hilbert空间分析以及通过离散化引起的不确定性来捕获由于GP回归中的错误而捕获不确定性的过渡概率间隔。该框架利用现有的模型检查工具来验证对给定时间逻辑规范的不确定MDP抽象。我们建立将验证结果扩展到潜在部分可观察系统的抽象结果的正确性。我们表明框架的计算复杂性在数据集和离散抽象的大小中是多项式。复杂性分析说明了验证结果质量与处理较大数据集和更精细抽象的计算负担之间的权衡。最后,我们展示了我们的学习和验证框架在具有线性,非线性和切换动力系统的几种案例研究中的功效。
translated by 谷歌翻译
动态系统的建模和仿真是许多控制方法的必要步骤。使用基于参数的基于参数的技术来建模现代系统,例如软机器人或人机交互,由于系统动态的复杂性,通常是挑战甚至不可行的。相比之下,数据驱动方法只需要最少的先验知识和规模,并以系统的复杂性规模。特别地,高斯过程动态模型(GPDMS)为复杂动态的建模提供了非常有前途的结果。然而,这些GP模型的控制特性刚刚稀疏地研究,这导致了建模和控制方案中的“黑箱”处理。此外,GPDMS对预测目的的采样,尊重其非参数性的非公平性,使得理论分析具有挑战性。在本文中,我们呈现近似的GPDM,它是马尔可夫的并分析它们的控制理论特性。其中,分析了近似的误差,提供了轨迹的界限条件。结果用数字示例说明,该数值示例显示近似模型的功率,而计算时间显着降低。
translated by 谷歌翻译
我们使用仅使用独立和相同分布的样本的有限集合来估计用于估计动态系统的正向可迁移装置的算法。产生的估计是称为经验逆克里斯科特的函数的诸如函数的Sublevel组:已知经验逆Christoffel功能,以提供对概率分布的支持的良好近似。除了可达性分析之外,可以应用于估计随机变量支持的一般问题,这在数据科学中具有数据科学中的应用程序,可以应用于数据集中的Novelties和异常值。在安全是一个问题的应用中,保证在有限数据集上保持的准确性至关重要。在本文中,我们在可能大致正确(PAC)框架下证明了我们算法的界限。除了应用古典VAPnik-Chervonenkis(VC)维度绑定参数之外,我们除了利用核化经验逆克里斯科特函数和高斯进程回归模型之间的正式连接,我们还应用PAC-Bayes定理。基于Pac-Bayes的界限适用于比VC维度参数更一般的Christoffel功能,并在实验中实现了更大的样本效率。
translated by 谷歌翻译
当信号通过物理传感器测量,它们被噪声干扰。为了减少噪音,低通滤波器,以便衰减高频分量的输入信号,如果无论它们来自噪声或实际信号被通常使用的。因此,低通滤波器必须仔细调整以避免信号的显著恶化。这种调整需要有关的信号,这往往不是在应用,如强化学习或基于学习控制提供先验知识。为了克服这种限制,我们提出了一种基于高斯过程回归自适应低通滤波器。通过考虑以前的意见,更新和预测足够快的现实世界的滤波应用的恒定窗口即可实现。此外,超参数导致的低通行为适配的在线优化,使得没有事先调整是必要的。我们表明,该方法的估计误差一致有界,并证明了该方法的灵活性和效率的几个模拟。
translated by 谷歌翻译
这项工作提出了一个新的程序,可以在高斯过程(GP)建模的背景下获得预测分布,并放松了一些感兴趣的范围之外的插值约束:预测分布的平均值不一定会在观察到的值时插入观察值的值。感兴趣的外部范围,但仅限于留在外面。这种称为放松的高斯工艺(REGP)插值的方法在感兴趣的范围内提供了更好的预测分布,尤其是在GP模型的平稳性假设不合适的情况下。它可以被视为一种面向目标的方法,并且在贝叶斯优化中变得特别有趣,例如,对于目标函数的最小化,低功能值的良好预测分布很重要。当将预期改进标准和REGP用于依次选择评估点时,从理论上保证了所得优化算法的收敛性(前提)。实验表明,在贝叶斯优化中使用REGP代替固定的GP模型是有益的。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译
在预测功能(假设)中获得可靠的自适应置信度集是顺序决策任务的核心挑战,例如土匪和基于模型的强化学习。这些置信度集合通常依赖于对假设空间的先前假设,例如,繁殖核Hilbert Space(RKHS)的已知核。手动设计此类内核是容易发生的,错误指定可能导致性能差或不安全。在这项工作中,我们建议从离线数据(meta-kel)中进行元学习核。对于未知核是已知碱基核的组合的情况,我们基于结构化的稀疏性开发估计量。在温和的条件下,我们保证我们的估计RKHS会产生有效的置信度集,随着越来越多的离线数据的量,它变得与鉴于真正未知内核的置信度一样紧。我们展示了我们关于内核化强盗问题(又称贝叶斯优化)的方法,我们在其中建立了遗憾的界限,与鉴于真正的内核的人竞争。我们还经验评估方法对贝叶斯优化任务的有效性。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
基于内核的模型,例如内核脊回归和高斯工艺在机器学习应用程序中无处不在,用于回归和优化。众所周知,基于内核的模型的主要缺点是高计算成本。给定$ n $样本的数据集,成本增长为$ \ Mathcal {o}(n^3)$。在某些情况下,现有的稀疏近似方法可以大大降低计算成本,从而有效地将实际成本降低到$ \ natercal {o}(n)$。尽管取得了显着的经验成功,但由于近似值而导致的误差的分析范围的现有结果仍然存在显着差距。在这项工作中,我们为NyStr \“ Om方法和稀疏变分高斯过程近似方法提供新颖的置信区间,我们使用模型的近似(代理)后差解释来建立这些方法。我们的置信区间可改善性能。回归和优化问题的界限。
translated by 谷歌翻译
Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both an adherence to safety constraints defined on the system state, as well as guaranteeing compliant behaviour of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. Incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree of freedom planar robot with elastic joints.
translated by 谷歌翻译
贝叶斯神经网络试图将神经网络的强大预测性能与与贝叶斯架构预测产出相关的不确定性的正式量化相结合。然而,它仍然不清楚如何在升入网络的输出空间时,如何赋予网络的参数。提出了一种可能的解决方案,使用户能够为手头的任务提供适当的高斯过程协方差函数。我们的方法构造了网络参数的先前分配,称为ridgelet,它近似于网络的输出空间中的Posited高斯过程。与神经网络和高斯过程之间的连接的现有工作相比,我们的分析是非渐近的,提供有限的样本大小的错误界限。这建立了贝叶斯神经网络可以近似任何高斯过程,其协方差函数是足够规律的任何高斯过程。我们的实验评估仅限于概念验证,在那里我们证明ridgele先前可以在可以提供合适的高斯过程的回归问题之前出现非结构化。
translated by 谷歌翻译
In robotics, optimizing controller parameters under safety constraints is an important challenge. Safe Bayesian optimization (BO) quantifies uncertainty in the objective and constraints to safely guide exploration in such settings. Hand-designing a suitable probabilistic model can be challenging, however. In the presence of unknown safety constraints, it is crucial to choose reliable model hyper-parameters to avoid safety violations. Here, we propose a data-driven approach to this problem by meta-learning priors for safe BO from offline data. We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity. As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner via empirical uncertainty metrics and a frontier search algorithm. On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches while maintaining safety.
translated by 谷歌翻译
受到控制障碍功能(CBF)在解决安全性方面的成功以及数据驱动技术建模功能的兴起的启发,我们提出了一种使用高斯流程(GPS)在线合成CBF的非参数方法。 CBF等数学结构通过先验设计候选功能来实现安全性。但是,设计这样的候选功能可能具有挑战性。这种设置的一个实际示例是在需要确定安全且可导航区域的灾难恢复方案中设计CBF。在这样的示例中,安全性边界未知,不能先验设计。在我们的方法中,我们使用安全样本或观察结果来在线构建CBF,通过在这些样品上具有灵活的GP,并称我们为高斯CBF的配方。除非参数外,例如分析性障碍性和稳健的不确定性估计,GP具有有利的特性。这允许通过合并方差估计来实现具有高安全性保证的后部组件,同时还计算封闭形式中相关的部分导数以实现安全控制。此外,我们方法的合成安全函数允许根据数据任意更改相应的安全集,从而允许非Convex安全集。我们通过证明对固定但任意的安全集和避免碰撞的安全性在线构建安全集的安全控制,从而在四极管上验证了我们的方法。最后,我们将高斯CBF与常规的CBF并列,在嘈杂状态下,以突出其灵活性和对噪声的鲁棒性。实验视频可以在:https://youtu.be/hx6uokvcigk上看到。
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译