We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译
Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.
translated by 谷歌翻译
In robotics, optimizing controller parameters under safety constraints is an important challenge. Safe Bayesian optimization (BO) quantifies uncertainty in the objective and constraints to safely guide exploration in such settings. Hand-designing a suitable probabilistic model can be challenging, however. In the presence of unknown safety constraints, it is crucial to choose reliable model hyper-parameters to avoid safety violations. Here, we propose a data-driven approach to this problem by meta-learning priors for safe BO from offline data. We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity. As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner via empirical uncertainty metrics and a frontier search algorithm. On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches while maintaining safety.
translated by 谷歌翻译
在评估目标时,在线优化嘈杂的功能需要在部署系统上进行实验,这是制造,机器人技术和许多其他功能的关键任务。通常,对安全输入的限制是未知的,我们只会获得嘈杂的信息,表明我们违反约束的距离有多近。但是,必须始终保证安全性,不仅是算法的最终输出。我们介绍了一种通用方法,用于在高维非线性随机优化问题中寻求一个固定点,其中在学习过程中保持安全至关重要。我们称为LB-SGD的方法是基于应用随机梯度下降(SGD),其精心选择的自适应步长大小到原始问题的对数屏障近似。我们通过一阶和零阶反馈提供了非凸,凸面和强键平滑约束问题的完整收敛分析。与现有方法相比,我们的方法通过维度可以更好地更新和比例。我们从经验上将样本复杂性和方法的计算成本比较现有的安全学习方法。除了合成基准测试之外,我们还证明了方法对在安全强化学习(RL)中政策搜索任务中最大程度地减少限制违规的有效性。
translated by 谷歌翻译
寻找最佳个性化的治疗方案被认为是最具挑战性的精确药物问题之一。各种患者特征会影响对治疗的反应,因此,没有一种尺寸适合 - 所有方案。此外,甚至在治疗过程中均不服用单一不安全剂量可能对患者的健康产生灾难性后果。因此,个性化治疗模型必须确保患者{\ EM安全} {\ EM有效}优化疗程。在这项工作中,我们研究了一种普遍的和基本的医学问题,其中治疗旨在在范围内保持生理变量,优选接近目标水平。这样的任务也与其他域中相关。我们提出ESCADA,这是一个用于这个问题结构的通用算法,在确保患者安全的同时制作个性化和背景感知最佳剂量推荐。我们在Escada的遗憾中获得了高概率的上限以及安全保证。最后,我们对1型糖尿病疾病的{\ em推注胰岛素剂量}分配问题进行了广泛的模拟,并比较ESCADA对汤普森采样,规则的剂量分配者和临床医生的表现。
translated by 谷歌翻译
在预测功能(假设)中获得可靠的自适应置信度集是顺序决策任务的核心挑战,例如土匪和基于模型的强化学习。这些置信度集合通常依赖于对假设空间的先前假设,例如,繁殖核Hilbert Space(RKHS)的已知核。手动设计此类内核是容易发生的,错误指定可能导致性能差或不安全。在这项工作中,我们建议从离线数据(meta-kel)中进行元学习核。对于未知核是已知碱基核的组合的情况,我们基于结构化的稀疏性开发估计量。在温和的条件下,我们保证我们的估计RKHS会产生有效的置信度集,随着越来越多的离线数据的量,它变得与鉴于真正未知内核的置信度一样紧。我们展示了我们关于内核化强盗问题(又称贝叶斯优化)的方法,我们在其中建立了遗憾的界限,与鉴于真正的内核的人竞争。我们还经验评估方法对贝叶斯优化任务的有效性。
translated by 谷歌翻译
高赌注应用中产生的许多黑匣子优化任务需要风险厌恶的决策。但标准贝叶斯优化(BO)范式仅优化了预期值。我们概括了博的商业卑鄙和输入依赖性方差,我们认为我们认为是未知的先验。特别是,我们提出了一种新的风险厌恶异源贝类贝叶斯优化算法(Rahbo),其旨在识别具有高回报和低噪声方差的解决方案,同时在飞行时学习噪声分布。为此,我们将期望和方差模拟(未知)RKHS函数,并提出了一种新的风险感知获取功能。我们对我们的方法绑定了遗憾,并提供了一个强大的规则,以报告必须识别单个解决方案的应用程序的最终决策点。我们展示了Rahbo对合成基准函数和超参数调整任务的有效性。
translated by 谷歌翻译
计算高效的非近视贝叶斯优化(BO)的最新进展提高了传统近视方法的查询效率,如预期的改进,同时仅适度提高计算成本。然而,这些进展在很大程度上是有限的,因为不受约束的优化。对于约束优化,少数现有的非近视博方法需要重量计算。例如,一个现有的非近视约束BO方法[LAM和Willcox,2017]依赖于计算昂贵的不可靠的暴力衍生物的无可靠性衍生物优化蒙特卡罗卷展卷采集功能。使用Reparameterization技巧进行更有效的基于衍生物的优化的方法,如在不受约束的环境中,如样本平均近似和无限扰动分析,不扩展:约束在取样的采集功能表面中引入阻碍其优化的不连续性。此外,我们认为非近视在受限制问题中更为重要,因为违反限制的恐惧将近视方法推动了可行和不可行区域之间的边界,减缓了具有严格约束的最佳解决方案的发现。在本文中,我们提出了一种计算的有效的两步保护受限贝叶斯优化采集功能(2-OPT-C)支持顺序和批处理设置。为了实现快速采集功能优化,我们开发了一种新的基于似然比的非偏见估计,其两步最佳采集函数的梯度不使用Reparameterization技巧。在数值实验中,2-OPT-C通常通过先前的方法通过2倍或更多的查询效率,并且在某些情况下通过10倍或更大。
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
高斯流程已成为各种安全至关重要环境的有前途的工具,因为后方差可用于直接估计模型误差并量化风险。但是,针对安全 - 关键环境的最新技术取决于核超参数是已知的,这通常不适用。为了减轻这种情况,我们在具有未知的超参数的设置中引入了强大的高斯过程统一误差界。我们的方法计算超参数空间中的一个置信区域,这使我们能够获得具有任意超参数的高斯过程模型误差的概率上限。我们不需要对超参数的任何界限,这是相关工作中常见的假设。相反,我们能够以直观的方式从数据中得出界限。我们还采用了建议的技术来为一类基于学习的控制问题提供绩效保证。实验表明,界限的性能明显优于香草和完全贝叶斯高斯工艺。
translated by 谷歌翻译
最大值熵搜索(MES)是贝叶斯优化(BO)的最先进的方法之一。在本文中,我们提出了一种用于受约束问题的MES的新型变型,通过信息下限(CMES-IBO)称为受约束的ME,其基于互信息的下限的蒙特卡罗(MC)估计器(MI)。我们首先定义定义最大值的MI,以便它可以在可行性方面结合不确定性。然后,我们得出了保证非消极性的MI的下限,而传统ME的受约束对应物可以是负的。我们进一步提供了理论分析,确保我们估算者的低变异性,从未针对任何现有的信息理论博进行调查。此外,使用条件MI,我们将CMES-1BO扩展到并联设置,同时保持所需的性质。我们展示了CMES-IBO对多个基准功能和真实问题的有效性。
translated by 谷歌翻译
贝叶斯优化(BO)已成为黑框函数的顺序优化。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(meta-bo)来利用这些先前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害的不同任务。本文介绍了两种可扩展且可证明的稳健元算法:稳健的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且证明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用程序中都有效,一致地性能,(b)RM-GP-TS,尽管在理论上和实践中都比RM-GP-ucb稳健,但在实践中,在竞争性中表现出色某些方案具有较小的任务,并且在计算上更有效。
translated by 谷歌翻译
我们考虑使用昂贵的功能评估(也称为实验)的黑匣子多目标优化(MOO)的问题,其中目标是通过最小化实验的总资源成本来近似真正的帕累托解决方案。例如,在硬件设计优化中,我们需要使用昂贵的计算模拟找到权衡性能,能量和面积开销的设计。关键挑战是选择使用最小资源揭示高质量解决方案的实验顺序。在本文中,我们提出了一种基于输出空间熵(OSE)搜索原理来解决MOO问题的一般框架:选择最大化每单位资源成本的信息的实验,这是真正的帕累托前线所获得的信息。我们适当地实例化了OSE搜索的原理,以导出以下四个Moo问题设置的高效算法:1)最基本的EM单一保真设置,实验昂贵且准确; 2)处理EM黑匣子约束}在不执行实验的情况下无法进行评估; 3)离散的多保真设置,实验可以在消耗的资源量和评估准确度时变化; 4)EM连续保真设置,其中连续函数近似导致巨大的实验空间。不同综合和现实世界基准测试的实验表明,基于OSE搜索的算法在既有计算效率和MOO解决方案的准确性方面改进了最先进的方法。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches.
translated by 谷歌翻译
贝叶斯优化(BO)算法在涉及昂贵的黑盒功能的应用中表现出了显着的成功。传统上,BO被设置为一个顺序决策过程,该过程通过采集函数和先前的功能(例如高斯过程)来估计查询点的实用性。然而,最近,通过密度比率估计(BORE)对BO进行重新制定允许将采集函数重新诠释为概率二进制分类器,从而消除了对函数的显式先验和提高可伸缩性的需求。在本文中,我们介绍了对孔的遗憾和算法扩展的理论分析,并提高了不确定性估计。我们还表明,通过将问题重新提交为近似贝叶斯推断,可以自然地扩展到批处理优化设置。所得算法配备了理论性能保证,并在一系列实验中对其他批处理基本线进行了评估。
translated by 谷歌翻译
我们考虑使用个性化的联合学习,除了全球目标外,每个客户还对最大化个性化的本地目标感兴趣。我们认为,在一般连续的动作空间设置下,目标函数属于繁殖的内核希尔伯特空间。我们提出了基于替代高斯工艺(GP)模型的算法,该算法达到了最佳的遗憾顺序(要归结为各种因素)。此外,我们表明,GP模型的稀疏近似显着降低了客户之间的沟通成本。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
安全勘探是在安全关键系统中应用强化学习(RL)的关键。现有的安全勘探方法在规律的假设下保证安全,并且很难将它们应用于大规模的真正问题。我们提出了一种新颖的算法,SPO-LF,它们优化代理的策略,同时学习通过传感器和环境奖励/安全使用的本地可用功能与使用广义线性函数近似之间的关系。我们提供了对其安全性和最优性的理论保障。我们通过实验表明,我们的算法在样本复杂性和计算成本方面更有效,2)更适用于比以前的安全RL方法具有理论保证的方法,以及3)与现有的相当相当的样本和更安全。具有安全限制的高级深度RL方法。
translated by 谷歌翻译
科学和工程中的复杂过程通常被制定为多阶段决策问题。在本文中,我们考虑了一种称为级联过程的多级决策过程。级联过程是一个多级过程,其中一个级的输出用作下一阶段的输入。当每个阶段的成本昂贵时,难以详尽地搜索每个阶段的最佳可控参数。为了解决这个问题,我们将级联过程的优化作为贝叶斯优化框架的延伸,提出了两种类型的采集功能(AFS),基于可靠的间隔和预期的改进。我们调查所提出的AFS的理论特性,并通过数值实验证明其有效性。此外,我们考虑一个被称为悬架设置的延伸,其中我们被允许在多阶段决策过程中暂停级联过程,这些过程经常出现在实际问题中。我们在太阳能电池模拟器的优化问题中应用提出的方法,这是本研究的动机。
translated by 谷歌翻译