贝叶斯方法是由于先验引起的正则化效应,这是对统计学的统计推断的流行选择,该效应可抵消过度拟合。在密度估计的背景下,标准的贝叶斯方法是针对后验预测。通常,后验预测的直接估计是棘手的,因此方法通常诉诸于后验分布作为中间步骤。然而,最近的递归预测copula更新的开发使得无需后近似即可执行可拖动的预测密度估计。尽管这些估计器在计算上具有吸引力,但它们倾向于在非平滑数据分布上挣扎。这在很大程度上是由于可能从中得出所提出的Copula更新的可能性模型的相对限制性形式。为了解决这一缺点,我们考虑了具有自回归似然分解和高斯过程的贝叶斯非参数模型,该模型在Copula更新中产生了数据依赖于数据的带宽参数。此外,我们使用自回归神经网络对带宽进行新的参数化,从而将数据映射到潜在空间中,从而能够捕获数据中更复杂的依赖性。我们的扩展增加了现有的递归贝叶斯密度估计器的建模能力,从而在表格数据集上实现了最新的结果。
translated by 谷歌翻译
许多机器学习问题可以在估计功能的背景下构成,并且通常是时间依赖的功能,随着观察结果的到来,这些功能是实时估计的。高斯工艺(GPS)是建模实现非线性函数的吸引人选择,这是由于其灵活性和不确定性定量。但是,典型的GP回归模型有几个缺点:1)相对于观测值的常规GP推理量表$ O(n^{3})$; 2)顺序更新GP模型并非微不足道; 3)协方差内核通常在该函数上执行平稳性约束,而具有非平稳协方差内核的GP通常在实践中使用了很难使用。为了克服这些问题,我们提出了一种顺序的蒙特卡洛算法,以适合GP的无限混合物,这些混合物捕获非平稳行为,同时允许在线分布式推理。我们的方法从经验上改善了在时间序列数据中存在非平稳性的在线GP估计的最先进方法的性能。为了证明我们在应用设置中提出的在线高斯流程混合物方法的实用性,我们表明我们可以使用在线高斯工艺匪徒成功实现优化算法。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
高斯流程是许多灵活的统计和机器学习模型的关键组成部分。但是,由于需要倒转和存储完整的协方差矩阵,它们表现出立方计算的复杂性和高内存约束。为了解决这个问题,已经考虑了高斯流程专家的混合物,其中数据点被分配给独立专家,从而通过允许基于较小的局部协方差矩阵来降低复杂性。此外,高斯流程专家的混合物大大富含模型的灵活性,从而允许诸如非平稳性,异方差和不连续性等行为。在这项工作中,我们基于嵌套的蒙特卡洛采样器构建了一种新颖的推理方法,以同时推断门控网络和高斯工艺专家参数。与重要性采样相比,这大大改善了推断,尤其是在固定高斯流程不合适的情况下,同时仍然完全平行。
translated by 谷歌翻译
我们提出了一种新的非参数混合物模型,用于多变量回归问题,灵感来自概率K-Nearthimest邻居算法。使用有条件指定的模型,对样本外输入的预测基于与每个观察到的数据点的相似性,从而产生高斯混合物表示的预测分布。在混合物组件的参数以及距离度量标准的参数上,使用平均场变化贝叶斯算法进行后推断,并具有基于随机梯度的优化过程。在与数据大小相比,输入 - 输出关系很复杂,预测分布可能偏向或多模式的情况下,输入相对较高的尺寸,该方法尤其有利。对五个数据集进行的计算研究,其中两个是合成生成的,这说明了我们的高维输入的专家混合物方法的明显优势,在验证指标和视觉检查方面都优于竞争者模型。
translated by 谷歌翻译
目前,难以获得贝叶斯方法深入学习的好处,这允许明确的知识规范,准确地捕获模型不确定性。我们呈现先前数据拟合网络(PFN)。 PFN利用大规模机器学习技术来近似一组一组后索。 PFN唯一要求工作的要求是能够从先前分配通过监督的学习任务(或函数)来采样。我们的方法将后近似的目标重新定为具有带有值的输入的监督分类问题:它反复从先前绘制任务(或功能),从中绘制一组数据点及其标签,掩盖其中一个标签并学习基于其余数据点的设定值输入对其进行概率预测。呈现来自新的监督学习任务的一组样本作为输入,PFNS在单个前向传播中对任意其他数据点进行概率预测,从而学习到近似贝叶斯推断。我们展示了PFN可以接近完全模仿高斯过程,并且还可以实现高效的贝叶斯推理对难以处理的问题,与当前方法相比,多个设置中有超过200倍的加速。我们在非常多样化的地区获得强烈的结果,如高斯过程回归,贝叶斯神经网络,小型表格数据集的分类,以及少量图像分类,展示了PFN的一般性。代码和培训的PFN在https://github.com/automl/transformerscandobayesianinference发布。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
高斯过程中的变量选择(GPS)通常通过阈值平衡“自动相关性确定”内核的逆宽度,但在高维数据集中,这种方法可能是不可靠的。更概率的原则性的替代方案是使用尖峰和平板前沿并推断可变包裹物的后验概率。但是,GPS中的现有实现是以高维和大量$ N $数据集运行的昂贵,或者对于大多数内核都是棘手的。因此,我们为具有任意微分内核的秒杀和平板GP开发了一种快速且可扩展的变分推理算法。我们提高了算法通过贝叶斯模型对普遍存在的模型进行平均来适应相关变量的稀疏性的能力,并使用零温度后部限制,辍学灌注和最近的邻米匹配来实现大量速度UPS。在实验中,我们的方法始终如一地优于Vanilla和稀疏变分的GPS,同时保留类似的运行时间(即使是N = 10 ^ 6美元),并且使用MCMC使用Spike和Slab GP竞争地执行,但速度最高可达1000美元。
translated by 谷歌翻译
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
translated by 谷歌翻译
剩下的交叉验证(LOO-CV)是一种估计样本外预测准确性的流行方法。但是,由于需要多次拟合模型,因此计算LOO-CV标准在计算上可能很昂贵。在贝叶斯的情况下,重要性采样提供了一种可能的解决方案,但是经典方法可以轻松地产生差异是无限的估计器,从而使它们可能不可靠。在这里,我们提出和分析一种新型混合估计量来计算贝叶斯Loo-CV标准。我们的方法保留了经典方法的简单性和计算便利性,同时保证了所得估计器的有限差异。提供了理论和数值结果,以说明提高的鲁棒性和效率。在高维问题中,计算益处尤为重要,可以为更广泛的模型执行贝叶斯loo-CV。所提出的方法可以在标准概率编程软件中很容易实现,并且计算成本大致相当于拟合原始模型一次。
translated by 谷歌翻译
标准GPS为行为良好的流程提供了灵活的建模工具。然而,预计与高斯的偏差有望在现实世界数据集中出现,结构异常值和冲击通常会观察到。在这些情况下,GP可能无法充分建模不确定性,并且可能会过度推动。在这里,我们将GP框架扩展到一类新的时间变化的GP,从而可以直接建模重尾非高斯行为,同时通过非均匀GPS表示的无限混合物保留了可拖动的条件GP结构。有条件的GP结构是通过在潜在转化的输入空间上调节观测值来获得的,并使用L \'{e} Vy过程对潜在转化的随机演变进行建模,该过程允许贝叶斯在后端预测密度和潜在转化中的贝叶斯推断功能。我们为该模型提供了马尔可夫链蒙特卡洛推理程序,并证明了与标准GP相比的潜在好处。
translated by 谷歌翻译
高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量的间域间采样进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型性能,并发现在许多情况下,我们的方法可以提供比标准GP模型的改进。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
结构方程模型(SEM)是一种有效的框架,其原因是通过定向非循环图(DAG)表示的因果关系。最近的进步使得能够从观察数据中实现了DAG的最大似然点估计。然而,在实际场景中,可以不能准确地捕获在推断下面的底层图中的不确定性,其中真正的DAG是不可识别的并且/或观察到的数据集是有限的。我们提出了贝叶斯因果发现网(BCD网),一个变分推理框架,用于估算表征线性高斯SEM的DAG的分布。由于图形的离散和组合性质,开发一个完整的贝叶斯后面是挑战。我们通过表达变分别家庭分析可扩展VI的可扩展VI的关键设计选择,例如1)表达性变分别家庭,2)连续弛豫,使低方差随机优化和3)在潜在变量上具有合适的前置。我们提供了一系列关于实际和合成数据的实验,显示BCD网在低数据制度中的标准因果发现度量上的最大似然方法,例如结构汉明距离。
translated by 谷歌翻译
收购用于监督学习的标签可能很昂贵。为了提高神经网络回归的样本效率,我们研究了活跃的学习方法,这些方法可以适应地选择未标记的数据进行标记。我们提出了一个框架,用于从(与网络相关的)基础内核,内核转换和选择方法中构造此类方法。我们的框架涵盖了许多基于神经网络的高斯过程近似以及非乘式方法的现有贝叶斯方法。此外,我们建议用草图的有限宽度神经切线核代替常用的最后层特征,并将它们与一种新型的聚类方法结合在一起。为了评估不同的方法,我们引入了一个由15个大型表格回归数据集组成的开源基准。我们所提出的方法的表现优于我们的基准测试上的最新方法,缩放到大数据集,并在不调整网络体系结构或培训代码的情况下开箱即用。我们提供开源代码,包括所有内核,内核转换和选择方法的有效实现,并可用于复制我们的结果。
translated by 谷歌翻译
引入了涉及高斯流程(GPS)的模型,以同时处理多个功能数据的多任务学习,聚类和预测。该过程充当了功能数据的基于模型的聚类方法,也是对新任务进行后续预测的学习步骤。该模型是将多任务GPS与常见平均过程的混合物实例化。得出了一种用于处理超参数的优化以及超构件对潜在变量和过程的估计的优化。我们建立了明确的公式,用于将平均过程和潜在聚类变量整合到预测分布中,这是两个方面的不确定性。该分布定义为集群特异性GP预测的混合物,在处理组结构数据时,可以增强性能。该模型处理观察的不规则网格,并提供了关于协方差结构的不同假设,用于在任务之间共享其他信息。聚类和预测任务上的性能将通过各种模拟方案和真实数据集进行评估。总体算法称为magmaclust,可公开作为R包。
translated by 谷歌翻译
无似然方法是对可以模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据据信为低维成分提供信息的摘要统计数据来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值在实践中可能是差的。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中很难直接近似理想的选择。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。考虑到初始选择的低维摘要统计量可能仅对边缘后验位置有用,新方法通过使用所有摘要统计数据来确保全局可识别性来提高性能,从而提高性能使用低维摘要统计量进行精确的低维近似。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。
translated by 谷歌翻译