尽管经过多年的努力,但在经典数据的情况下,量子机学习社区只能显示出某些人为加密启发的数据集的量子学习优势。在本说明中,我们讨论了发现学习问题的挑战,即量子学习算法可以比任何经典学习算法更快学习,并研究如何识别此类学习问题。具体而言,我们反思了与此问题有关的计算学习理论中的主要概念,并讨论定义的细微变化在概念上意味着显着不同的任务,这可能会导致分离或根本没有分离。此外,我们研究了现有的学习问题,并具有可证明的量子加速,以提炼一组更一般和充分的条件(即``清单''),以表现出在经典学习者和量子学习者之间的分离的学习问题。这些清单旨在简化一个人的方法来证明学习问题或阐明瓶颈的量子加速。最后,为了说明其应用,我们分析了潜在分离的示例(即,当学习问题是从计算分离中或数据来自量子实验时)通过我们的方法的镜头进行分析。
translated by 谷歌翻译
我们建立了量子算法设计与电路下限之间的第一一般连接。具体来说,让$ \ mathfrak {c} $是一类多项式大小概念,假设$ \ mathfrak {c} $可以在统一分布下的成员查询,错误$ 1/2 - \ gamma $通过时间$ t $量子算法。我们证明如果$ \ gamma ^ 2 \ cdot t \ ll 2 ^ n / n $,则$ \ mathsf {bqe} \ nsubseteq \ mathfrak {c} $,其中$ \ mathsf {bqe} = \ mathsf {bque} [2 ^ {o(n)}] $是$ \ mathsf {bqp} $的指数时间模拟。在$ \ gamma $和$ t $中,此结果是最佳的,因为它不难学习(经典)时间$ t = 2 ^ n $(没有错误) ,或在Quantum Time $ t = \ mathsf {poly}(n)$以傅立叶采样为单位为1/2美元(2 ^ { - n / 2})$。换句话说,即使对这些通用学习算法的边际改善也会导致复杂性理论的主要后果。我们的证明在学习理论,伪随机性和计算复杂性的几个作品上构建,并且至关重要地,在非凡的经典学习算法与由Oliveira和Santhanam建立的电路下限之间的联系(CCC 2017)。扩展他们对量子学习算法的方法,结果产生了重大挑战。为此,我们展示了伪随机发电机如何以通用方式意味着学习到较低的连接,构建针对均匀量子计算的第一个条件伪随机发生器,并扩展了Impagliazzo,JaiSwal的本地列表解码算法。 ,Kabanets和Wigderson(Sicomp 2010)通过微妙的分析到量子电路。我们认为,这些贡献是独立的兴趣,可能会发现其他申请。
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译
从样本中学习概率分布的任务在整个自然科学中无处不在。局部量子电路的输出分布构成了一类特别有趣的分布类别,对量子优势提案和各种量子机学习算法都具有关键的重要性。在这项工作中,我们提供了局部量子电路输出分布的可学习性的广泛表征。我们的第一个结果可以深入了解这些分布的有效学习性与有效的可模拟性之间的关系。具体而言,我们证明与Clifford电路相关的密度建模问题可以有效地解决,而对于深度$ d = n^{\ omega(1)} $电路,将单个$ t $ gate注入到电路中,这使这是如此问题很难。该结果表明,有效的模拟性并不意味着有效的可学习性。我们的第二组结果提供了对量子生成建模算法的潜在和局限性的见解。我们首先证明与深度$ d = n^{\ omega(1)} $局部量子电路相关的生成建模问题对于任何学习算法,经典或量子都很难。结果,一个人不能使用量子算法来为此任务获得实际优势。然后,我们证明,对于各种最实际相关的学习算法(包括混合量词古典算法),即使是与深度$ d = \ omega(\ log(n))$ Clifford Circuits相关的生成建模问题也是如此难的。该结果对近期混合量子古典生成建模算法的适用性造成了限制。
translated by 谷歌翻译
我们提出了两个关于量子计算机精确学习的新结果。首先,我们展示了如何从$ o(k ^ {1.5}(\ log k)^ 2)$统一量子示例的$ o(k ^ {1.5}(\ log k)^ 2)的$ k $ -fourier-sparse $ n $ -fourier-sparse $ n $ k $ -fourier-sparse $ n $ couber boolean函数。这改善了$ \ widetilde {\ theta}(kn)$统一的randuly \ emph {classical}示例(haviv和regev,ccc'15)。此外,我们提供了提高我们的$ \ widetilde {o}(k ^ {1.5})美元的可能方向,通过证明k $-$ -fourier-稀疏的布尔函数的改进,通过提高Chang的Lemma。其次,如果可以使用$ q $量子会员查询可以完全学习概念类$ \ mathcal {c} $,则也可以使用$ o o \ left(\ frac {q ^ 2} {\ logq} \ log | \ mathcal {c} | \右)$ \ emph {classical}会员查询。这通过$ \ log q $ -factor来改善最佳的仿真结果(Servedio和Gortler,Sicomp'04)。
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
我们概括了Furst等的“间接学习”技术。 al。,1991年,通过在可分配的分发$ \ mu $学习概念课程,以在统一分布上学习相同的概念类。当$ \ mu $的采样器均包含在目标概念类中,减少成功,在Impagliazzo&Luby的意义上有效地可逆于1989年。我们给出了两种应用。 - 我们展示了AC0 [Q]可以通过任何简洁描述的产品分发来学习。 AC0 [Q]是多项式大小的恒定深度布尔电路的类,或者,而不是,并不计算未绑定的粉丝的Modulo $ Q $ Q。我们的算法在随机的准多项式时间中运行,并使用会员查询。 - 如果在Razborov和Rudich 1997的意义上存在强烈有用的自然属性 - 一种可以区分无随机串和非级别电路复杂性的串的有效算法 - 那么一般多项式的布尔电路就可以在任何有效地学习可在随机多项式时间的可分配分布,给予目标函数的成员资格查询
translated by 谷歌翻译
近年来,现代机器学习系统已成功应用于各种任务,但使此类系统对输入实例的对抗完全选择的修改似乎是一个更难的问题。可能会说没有完全满足的解决方案已经找到最新的解决方案,如果标准配方甚至允许原则的解决方案,则尚不清楚。因此,不是遵循有界扰动的经典路径,我们考虑类似于Bshouty和杰克逊引入的量子Pac学习模型[1995]。我们的第一款主要贡献表明,在该模型中,我们可以减少两个经典学习理论问题的结合的对抗性鲁棒性,即(问题1)找到生成模型的问题和(问题2)对尊重的鲁棒分类器的设计问题分配转移。我们的第二个关键贡献是考虑的框架不依赖于特定的(并且因此也有些任意的)威胁模型,如$ \ ell_p $界扰动。相反,我们的减少保证,为了解决我们模型中的对抗鲁棒性问题,它足以考虑一个距离概念,即Hellinger距离。从技术角度来看,我们的协议严重是基于近期量子计算代表团的进步,例如, Mahadev [2018]。虽然被认为的模型是量子,因此没有立即适用于“真实世界”的情况,但可能希望在未来可以找到一种方法可以找到将“真实世界”问题融入量子框架或者可以找到经典算法,其能够模仿其强大的量子对应物。
translated by 谷歌翻译
Learning about physical systems from quantum-enhanced experiments, relying on a quantum memory and quantum processing, can outperform learning from experiments in which only classical memory and processing are available. Whereas quantum advantages have been established for a variety of state learning tasks, quantum process learning allows for comparable advantages only with a careful problem formulation and is less understood. We establish an exponential quantum advantage for learning an unknown $n$-qubit quantum process $\mathcal{N}$. We show that a quantum memory allows to efficiently solve the following tasks: (a) learning the Pauli transfer matrix of an arbitrary $\mathcal{N}$, (b) predicting expectation values of bounded Pauli-sparse observables measured on the output of an arbitrary $\mathcal{N}$ upon input of a Pauli-sparse state, and (c) predicting expectation values of arbitrary bounded observables measured on the output of an unknown $\mathcal{N}$ with sparse Pauli transfer matrix upon input of an arbitrary state. With quantum memory, these tasks can be solved using linearly-in-$n$ many copies of the Choi state of $\mathcal{N}$, and even time-efficiently in the case of (b). In contrast, any learner without quantum memory requires exponentially-in-$n$ many queries, even when querying $\mathcal{N}$ on subsystems of adaptively chosen states and performing adaptively chosen measurements. In proving this separation, we extend existing shadow tomography upper and lower bounds from states to channels via the Choi-Jamiolkowski isomorphism. Moreover, we combine Pauli transfer matrix learning with polynomial interpolation techniques to develop a procedure for learning arbitrary Hamiltonians, which may have non-local all-to-all interactions, from short-time dynamics. Our results highlight the power of quantum-enhanced experiments for learning highly complex quantum dynamics.
translated by 谷歌翻译
我们显示出与错误(LWE)问题的经典学习之间的直接和概念上的简单减少,其连续类似物(Bruna,Regev,Song and Tang,STOC 2021)。这使我们能够将基于LWE的密码学的强大机械带到Clwe的应用中。例如,我们在GAP最短矢量问题的经典最坏情况下获得了Clwe的硬度。以前,这仅在晶格问题的量子最坏情况下才知道。更广泛地说,随着我们在两个问题之间的减少,LWE的未来发展也将适用于CLWE及其下游应用程序。作为一种具体的应用,我们显示了高斯混合物密度估计的硬度结果改善。在此计算问题中,给定样品访问高斯人的混合物,目标是输出估计混合物密度函数的函数。在经典LWE问题的(合理且被广泛相信的)指数硬度下,我们表明高斯混合物密度估计$ \ Mathbb {r}^n $,大约$ \ log n $ gaussian组件给定$ \ mathsf {poly}(poly}(poly}(poly})) n)$样品需要$ n $的时间准分线性。在LWE的(保守)多项式硬度下,我们显示出$ n^{\ epsilon} $高斯的密度估计,对于任何常数$ \ epsilon> 0 $,它可以改善Bruna,Regev,Song和Tang(Stoc 2021) ,在多项式(量子)硬度假设下,他们至少以$ \ sqrt {n} $高斯的表现表现出硬度。我们的关键技术工具是从古典LWE到LWE的缩短,并使用$ k $ -sparse Secrets,其中噪声的乘法增加仅为$ o(\ sqrt {k})$,与环境尺寸$ n $无关。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
可实现和不可知性的可读性的等价性是学习理论的基本现象。与PAC学习和回归等古典设置范围的变种,近期趋势,如对冲强劲和私人学习,我们仍然缺乏统一理论;等同性的传统证据往往是不同的,并且依赖于强大的模型特异性假设,如统一的收敛和样本压缩。在这项工作中,我们给出了第一个独立的框架,解释了可实现和不可知性的可读性的等价性:三行黑箱减少简化,统一,并在各种各样的环境中扩展了我们的理解。这包括没有已知的学报的模型,例如学习任意分布假设或一般损失,以及许多其他流行的设置,例如强大的学习,部分学习,公平学习和统计查询模型。更一般地,我们认为可实现和不可知的学习的等价性实际上是我们调用属性概括的更广泛现象的特殊情况:可以满足有限的学习算法(例如\噪声公差,隐私,稳定性)的任何理想性质假设类(可能在某些变化中)延伸到任何学习的假设类。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
量子机学习(QML)模型旨在从量子状态中编码的数据中学习。最近,已经表明,几乎没有归纳偏差的模型(即,对模型中嵌入的问题没有假设)可能存在训练性和概括性问题,尤其是对于大问题。因此,开发编码与当前问题有关的信息的方案是至关重要的。在这项工作中,我们提出了一个简单但功能强大的框架,其中数据中的基本不向导用于构建QML模型,该模型通过构造尊重这些对称性。这些所谓的组不变模型产生的输出在对称组$ \ mathfrak {g} $的任何元素的动作下保持不变。我们提出了理论结果,基于$ \ mathfrak {g} $ - 不变型模型的设计,并通过几个范式QML分类任务来体现其应用程序,包括$ \ mathfrak {g} $是一个连续的谎言组,也是一个lie group,也是一个。离散对称组。值得注意的是,我们的框架使我们能够以一种优雅的方式恢复文献的几种知名算法,并发现了新的算法。综上所述,我们期望我们的结果将有助于为QML模型设计采用更多几何和群体理论方法铺平道路。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
我们连接学习算法和算法自动化证明搜索在命题证明系统中:每一种充分强大,表现良好的命题证明系统$ P $,我们证明以下陈述相当,1.可提供学习:$ P $证明p -size电路通过统一分布的子尺寸尺寸电路与成员资格查询进行了学习。 2.可提供自动性:$ P $证明$ P $可通过非均匀电路在表达P尺寸电路下限的命题公式上自动。在这里,如果I.-III,则$ P $足够强大和表现良好。持有:I. $ P $ P-SIMULATES JE \ v {R} \'ABEK的系统$ WF $(通过调节弱鸽子原则加强扩展弗雷格系统$ EF $); II。 $ P $满足标准证明系统的一些基本属性,P-SIMUTED $ WF $; III。 $ P $可有效地证明一些布尔函数$ H $ H $ H $难以平均为子增长尺寸电路。例如,如果III。保持$ p = wf $,然后项目1和2等同于$ p = wf $。如果在Ne \ Cop Cone $的函数$ H \ IN,这是平均尺寸为2 ^ {n / 4} $的电路,对于每个足够大的$ n $,那么有一个明确的命题证明系统$ p $满意的属性I.-III。,即物品1和2的等价,以$ p $持有。
translated by 谷歌翻译