我们建立了量子算法设计与电路下限之间的第一一般连接。具体来说,让$ \ mathfrak {c} $是一类多项式大小概念,假设$ \ mathfrak {c} $可以在统一分布下的成员查询,错误$ 1/2 - \ gamma $通过时间$ t $量子算法。我们证明如果$ \ gamma ^ 2 \ cdot t \ ll 2 ^ n / n $,则$ \ mathsf {bqe} \ nsubseteq \ mathfrak {c} $,其中$ \ mathsf {bqe} = \ mathsf {bque} [2 ^ {o(n)}] $是$ \ mathsf {bqp} $的指数时间模拟。在$ \ gamma $和$ t $中,此结果是最佳的,因为它不难学习(经典)时间$ t = 2 ^ n $(没有错误) ,或在Quantum Time $ t = \ mathsf {poly}(n)$以傅立叶采样为单位为1/2美元(2 ^ { - n / 2})$。换句话说,即使对这些通用学习算法的边际改善也会导致复杂性理论的主要后果。我们的证明在学习理论,伪随机性和计算复杂性的几个作品上构建,并且至关重要地,在非凡的经典学习算法与由Oliveira和Santhanam建立的电路下限之间的联系(CCC 2017)。扩展他们对量子学习算法的方法,结果产生了重大挑战。为此,我们展示了伪随机发电机如何以通用方式意味着学习到较低的连接,构建针对均匀量子计算的第一个条件伪随机发生器,并扩展了Impagliazzo,JaiSwal的本地列表解码算法。 ,Kabanets和Wigderson(Sicomp 2010)通过微妙的分析到量子电路。我们认为,这些贡献是独立的兴趣,可能会发现其他申请。
translated by 谷歌翻译
我们连接学习算法和算法自动化证明搜索在命题证明系统中:每一种充分强大,表现良好的命题证明系统$ P $,我们证明以下陈述相当,1.可提供学习:$ P $证明p -size电路通过统一分布的子尺寸尺寸电路与成员资格查询进行了学习。 2.可提供自动性:$ P $证明$ P $可通过非均匀电路在表达P尺寸电路下限的命题公式上自动。在这里,如果I.-III,则$ P $足够强大和表现良好。持有:I. $ P $ P-SIMULATES JE \ v {R} \'ABEK的系统$ WF $(通过调节弱鸽子原则加强扩展弗雷格系统$ EF $); II。 $ P $满足标准证明系统的一些基本属性,P-SIMUTED $ WF $; III。 $ P $可有效地证明一些布尔函数$ H $ H $ H $难以平均为子增长尺寸电路。例如,如果III。保持$ p = wf $,然后项目1和2等同于$ p = wf $。如果在Ne \ Cop Cone $的函数$ H \ IN,这是平均尺寸为2 ^ {n / 4} $的电路,对于每个足够大的$ n $,那么有一个明确的命题证明系统$ p $满意的属性I.-III。,即物品1和2的等价,以$ p $持有。
translated by 谷歌翻译
从样本中学习概率分布的任务在整个自然科学中无处不在。局部量子电路的输出分布构成了一类特别有趣的分布类别,对量子优势提案和各种量子机学习算法都具有关键的重要性。在这项工作中,我们提供了局部量子电路输出分布的可学习性的广泛表征。我们的第一个结果可以深入了解这些分布的有效学习性与有效的可模拟性之间的关系。具体而言,我们证明与Clifford电路相关的密度建模问题可以有效地解决,而对于深度$ d = n^{\ omega(1)} $电路,将单个$ t $ gate注入到电路中,这使这是如此问题很难。该结果表明,有效的模拟性并不意味着有效的可学习性。我们的第二组结果提供了对量子生成建模算法的潜在和局限性的见解。我们首先证明与深度$ d = n^{\ omega(1)} $局部量子电路相关的生成建模问题对于任何学习算法,经典或量子都很难。结果,一个人不能使用量子算法来为此任务获得实际优势。然后,我们证明,对于各种最实际相关的学习算法(包括混合量词古典算法),即使是与深度$ d = \ omega(\ log(n))$ Clifford Circuits相关的生成建模问题也是如此难的。该结果对近期混合量子古典生成建模算法的适用性造成了限制。
translated by 谷歌翻译
我们概括了Furst等的“间接学习”技术。 al。,1991年,通过在可分配的分发$ \ mu $学习概念课程,以在统一分布上学习相同的概念类。当$ \ mu $的采样器均包含在目标概念类中,减少成功,在Impagliazzo&Luby的意义上有效地可逆于1989年。我们给出了两种应用。 - 我们展示了AC0 [Q]可以通过任何简洁描述的产品分发来学习。 AC0 [Q]是多项式大小的恒定深度布尔电路的类,或者,而不是,并不计算未绑定的粉丝的Modulo $ Q $ Q。我们的算法在随机的准多项式时间中运行,并使用会员查询。 - 如果在Razborov和Rudich 1997的意义上存在强烈有用的自然属性 - 一种可以区分无随机串和非级别电路复杂性的串的有效算法 - 那么一般多项式的布尔电路就可以在任何有效地学习可在随机多项式时间的可分配分布,给予目标函数的成员资格查询
translated by 谷歌翻译
尽管经过多年的努力,但在经典数据的情况下,量子机学习社区只能显示出某些人为加密启发的数据集的量子学习优势。在本说明中,我们讨论了发现学习问题的挑战,即量子学习算法可以比任何经典学习算法更快学习,并研究如何识别此类学习问题。具体而言,我们反思了与此问题有关的计算学习理论中的主要概念,并讨论定义的细微变化在概念上意味着显着不同的任务,这可能会导致分离或根本没有分离。此外,我们研究了现有的学习问题,并具有可证明的量子加速,以提炼一组更一般和充分的条件(即``清单''),以表现出在经典学习者和量子学习者之间的分离的学习问题。这些清单旨在简化一个人的方法来证明学习问题或阐明瓶颈的量子加速。最后,为了说明其应用,我们分析了潜在分离的示例(即,当学习问题是从计算分离中或数据来自量子实验时)通过我们的方法的镜头进行分析。
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
大多数-AT是确定联合正常形式(CNF)中输入$ N $的最低价公式的问题至少为2 ^ {n-1} $令人满意的作业。在对概率规划和推论复杂性的各种AI社区中,广泛研究了多数饱和问题。虽然大多数饱满为期40多年来,但自然变体的复杂性保持开放:大多数 - $ k $ SAT,其中输入CNF公式仅限于最多$ k $的子句宽度。我们证明,每辆$ k $,大多数 - $ k $ sat是在p的。事实上,对于任何正整数$ k $和ratic $ \ rho \ in(0,1)$ in(0,1)$与有界分比者,我们给出了算法这可以确定给定的$ k $ -cnf是否至少有$ \ rho \ cdot 2 ^ n $令人满意的分配,在确定性线性时间(而先前的最着名的算法在指数时间中运行)。我们的算法对计算复杂性和推理的复杂性具有有趣的积极影响,显着降低了相关问题的已知复杂性,例如E-Maj-$ K $ Sat和Maj-Maj- $ K $ Sat。在我们的方法中,通过提取在$ k $ -cnf的相应设置系统中发现的向日葵,可以通过提取向日葵来解决阈值计数问题的有效方法。我们还表明,大多数 - $ k $ sat的易腐烂性有些脆弱。对于密切相关的gtmajority-sat问题(我们询问给定公式是否超过2 ^ {n-1} $满足分配),这已知是pp-cleanting的,我们表明gtmajority-$ k $ sat在p for $ k \ le 3 $,但为$ k \ geq 4 $完成np-cleante。这些结果是违反直觉的,因为这些问题的“自然”分类将是PP完整性,因为GTMAJority的复杂性存在显着差异 - $ k $ SAT和MOSTION- $ K $ SAT为所有$ k \ ge 4 $。
translated by 谷歌翻译
近年来,现代机器学习系统已成功应用于各种任务,但使此类系统对输入实例的对抗完全选择的修改似乎是一个更难的问题。可能会说没有完全满足的解决方案已经找到最新的解决方案,如果标准配方甚至允许原则的解决方案,则尚不清楚。因此,不是遵循有界扰动的经典路径,我们考虑类似于Bshouty和杰克逊引入的量子Pac学习模型[1995]。我们的第一款主要贡献表明,在该模型中,我们可以减少两个经典学习理论问题的结合的对抗性鲁棒性,即(问题1)找到生成模型的问题和(问题2)对尊重的鲁棒分类器的设计问题分配转移。我们的第二个关键贡献是考虑的框架不依赖于特定的(并且因此也有些任意的)威胁模型,如$ \ ell_p $界扰动。相反,我们的减少保证,为了解决我们模型中的对抗鲁棒性问题,它足以考虑一个距离概念,即Hellinger距离。从技术角度来看,我们的协议严重是基于近期量子计算代表团的进步,例如, Mahadev [2018]。虽然被认为的模型是量子,因此没有立即适用于“真实世界”的情况,但可能希望在未来可以找到一种方法可以找到将“真实世界”问题融入量子框架或者可以找到经典算法,其能够模仿其强大的量子对应物。
translated by 谷歌翻译
我们表明,具有“低稳定器复杂性”的量子状态可以有效地与HAAR随机区分开。具体而言,给定$ n $ qubit的纯状态$ | \ psi \ rangle $,我们给出了一种有效的算法,以区分$ | \ psi \ rangle $是(i)haar-random或(ii)具有稳定器保真度的状态至少$ \ frac {1} {k} $(即,具有一些稳定器状态的保真度至少$ \ frac {1} {k} $),保证就是其中之一。使用Black-box访问$ | \ psi \ rangle $,我们的算法使用$ o \!\ left(k^{12} \ log(1/\ delta)\ right)$ copies $ | \ psi \ rangle $和$ o \!\ left(n k^{12} \ log(1/\ delta)\ right)$ $时间以概率至少$ 1- \ delta $成功,并且随着访问状态准备统一,以$ | | \ psi \ rangle $(及其倒数),$ o \!\ left(k^{3} \ log(1/\ delta)\ right)$ queries和$ o \!\! log(1/\ delta)\ right)$时间就足够了。作为推论,我们证明$ \ omega(\ log(n))$ $ t $ - 盖特对于任何Clifford+$ t $ circile都是必不可少的,以准备计算上的pseudorandom Quantum Quantum state,这是一种首要的下限。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们研究了Massart噪声存在下PAC学习半空间的复杂性。在这个问题中,我们得到了I.I.D.标记的示例$(\ mathbf {x},y)\ in \ mathbb {r}^n \ times \ {\ pm 1 \} $,其中$ \ mathbf {x} $的分布是任意的,标签$ y y y y y y。 $是$ f(\ mathbf {x})$的MassArt损坏,对于未知的半空间$ f:\ mathbb {r}^n \ to \ to \ {\ pm 1 \} $,带有翻转概率$ \ eta(\ eta)(\ eta) Mathbf {x})\ leq \ eta <1/2 $。学习者的目的是计算一个小于0-1误差的假设。我们的主要结果是该学习问题的第一个计算硬度结果。具体而言,假设学习错误(LWE)问题(LWE)问题的(被认为是广泛的)超指定时间硬度,我们表明,即使最佳,也没有多项式时间MassArt Halfspace学习者可以更好地达到错误的错误,即使是最佳0-1错误很小,即$ \ mathrm {opt} = 2^{ - \ log^{c}(n)} $对于任何通用常数$ c \ in(0,1)$。先前的工作在统计查询模型中提供了定性上类似的硬度证据。我们的计算硬度结果基本上可以解决Massart Halfspaces的多项式PAC可学习性,这表明对该问题的已知有效学习算法几乎是最好的。
translated by 谷歌翻译
我们提出了第一近最优量子算法,用于估计欧几里德的规范,与有限均值和协方差的矢量值随机变量的平均值。我们的结果旨在将多元子高斯估计的理论延伸到量子设置。与经典上不同,如果任何单变量估计器都可以在维度中最多的对数开销转换为多变量估计器,则不会在量子设置中证明类似的结果。实际上,当样品复杂性小于尺寸时,Heinrich排除了平均估计问题的量子优势。我们的主要结果是表明,在这种低精度的方案之外,有一个量子估计值优于任何经典估算器。我们的方法比单变量设置大致涉及,大多数量子估计人员依赖于相位估计。我们利用各种额外的算法技术,如幅度放大,伯恩斯坦 - Vazirani算法和量子奇异值转换。我们的分析还使用多元截断统计的浓度不等式。我们以前在文献中出现的两个不同输入模型中的Quantum估算器。第一个提供对随机变量的二进制表示的相干访问,并且它包含经典设置。在第二模型中,随机变量直接编码到量子寄存器的相位中。该模型在许多量子算法中自然出现,但常常具有古典样品通常是无与伦比的。我们将我们的技术调整为这两个设置,我们表明第二种模型严格较弱,以解决平均估计问题。最后,我们描述了我们的算法的几个应用,特别是在测量通勤可观察到的期望值和机器学习领域时。
translated by 谷歌翻译
我们提出了两个关于量子计算机精确学习的新结果。首先,我们展示了如何从$ o(k ^ {1.5}(\ log k)^ 2)$统一量子示例的$ o(k ^ {1.5}(\ log k)^ 2)的$ k $ -fourier-sparse $ n $ -fourier-sparse $ n $ k $ -fourier-sparse $ n $ couber boolean函数。这改善了$ \ widetilde {\ theta}(kn)$统一的randuly \ emph {classical}示例(haviv和regev,ccc'15)。此外,我们提供了提高我们的$ \ widetilde {o}(k ^ {1.5})美元的可能方向,通过证明k $-$ -fourier-稀疏的布尔函数的改进,通过提高Chang的Lemma。其次,如果可以使用$ q $量子会员查询可以完全学习概念类$ \ mathcal {c} $,则也可以使用$ o o \ left(\ frac {q ^ 2} {\ logq} \ log | \ mathcal {c} | \右)$ \ emph {classical}会员查询。这通过$ \ log q $ -factor来改善最佳的仿真结果(Servedio和Gortler,Sicomp'04)。
translated by 谷歌翻译
我们使用对单个的,相同的$ d $维状态的相同副本进行的测量来研究量子断层扫描和阴影断层扫描的问题。我们首先因Haah等人而重新审视已知的下限。 (2017年)在痕量距离上具有准确性$ \ epsilon $的量子断层扫描,当测量选择与先前观察到的结果无关(即它们是非适应性的)时。我们简要地证明了这一结果。当学习者使用具有恒定结果数量的测量值时,这会导致更强的下限。特别是,这严格确定了民间传说的最佳性``Pauli phymography''算法的样本复杂性。我们还得出了$ \ omega(r^2 d/\ epsilon^2)$和$ \ omega(r^2 d/\ epsilon^2)的新颖界限( R^2 d^2/\ epsilon^2)$用于学习排名$ r $状态,分别使用任意和恒定的结果测量,在非适应性情况下。除了样本复杂性,对于学习量子的实际意义,是一种实际意义的资源状态是算法使用的不同测量值的数量。我们将下限扩展到学习者从固定的$ \ exp(o(d))$测量的情况下进行自适应测量的情况。这特别意味着适应性。没有使用可有效实现的单拷贝测量结果给我们任何优势。在目标是预测给定的可观察到给定序列的期望值的情况下,我们还获得了类似的界限,该任务被称为阴影层析成像。在适应性的情况下单拷贝测量可通过多项式大小的电路实现,我们证明了基于计算给定可观察物的样本平均值的直接策略是最佳的。
translated by 谷歌翻译
我们研究了Massart噪声的PAC学习半圆的问题。给定标记的样本$(x,y)$从$ \ mathbb {r} ^ {d} ^ {d} \ times \ times \ {\ pm 1 \} $,这样的例子是任意的和标签$ y $ y $ y $ x $是由按萨塔特对手损坏的目标半空间与翻转概率$ \ eta(x)\ leq \ eta \ leq 1/2 $,目标是用小小的假设计算假设错误分类错误。这个问题的最佳已知$ \ mathrm {poly}(d,1 / \ epsilon)$时间算法实现$ \ eta + \ epsilon $的错误,这可能远离$ \ mathrm {opt} +的最佳界限\ epsilon $,$ \ mathrm {opt} = \ mathbf {e} _ {x \ sim d_x} [\ eta(x)] $。虽然已知实现$ \ mathrm {opt} + O(1)$误差需要超级多项式时间在统计查询模型中,但是在已知的上限和下限之间存在大的间隙。在这项工作中,我们基本上表征了统计查询(SQ)模型中Massart HalfSpaces的有效可读性。具体来说,我们表明,在$ \ mathbb {r} ^ d $中没有高效的sq算法用于学习massart halfpaces ^ d $可以比$ \ omega(\ eta)$更好地实现错误,即使$ \ mathrm {opt} = 2 ^ { - - \ log ^ {c}(d)$,适用于任何通用常量$ c \ in(0,1)$。此外,当噪声上限$ \ eta $接近$ 1/2 $时,我们的错误下限变为$ \ eta - o _ {\ eta}(1)$,其中$ o _ {\ eta}(1)$当$ \ eta $接近$ 1/2 $时,术语达到0美元。我们的结果提供了强有力的证据表明,大规模半空间的已知学习算法几乎是最可能的,从而解决学习理论中的长期开放问题。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译