可实现和不可知性的可读性的等价性是学习理论的基本现象。与PAC学习和回归等古典设置范围的变种,近期趋势,如对冲强劲和私人学习,我们仍然缺乏统一理论;等同性的传统证据往往是不同的,并且依赖于强大的模型特异性假设,如统一的收敛和样本压缩。在这项工作中,我们给出了第一个独立的框架,解释了可实现和不可知性的可读性的等价性:三行黑箱减少简化,统一,并在各种各样的环境中扩展了我们的理解。这包括没有已知的学报的模型,例如学习任意分布假设或一般损失,以及许多其他流行的设置,例如强大的学习,部分学习,公平学习和统计查询模型。更一般地,我们认为可实现和不可知的学习的等价性实际上是我们调用属性概括的更广泛现象的特殊情况:可以满足有限的学习算法(例如\噪声公差,隐私,稳定性)的任何理想性质假设类(可能在某些变化中)延伸到任何学习的假设类。
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
Recently, Robey et al. propose a notion of probabilistic robustness, which, at a high-level, requires a classifier to be robust to most but not all perturbations. They show that for certain hypothesis classes where proper learning under worst-case robustness is \textit{not} possible, proper learning under probabilistic robustness \textit{is} possible with sample complexity exponentially smaller than in the worst-case robustness setting. This motivates the question of whether proper learning under probabilistic robustness is always possible. In this paper, we show that this is \textit{not} the case. We exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are \textit{not} probabilistically robustly PAC learnable with \textit{any} proper learning rule. However, if we compare the output of the learner to the best hypothesis for a slightly \textit{stronger} level of probabilistic robustness, we show that not only is proper learning \textit{always} possible, but it is possible via empirical risk minimization.
translated by 谷歌翻译
我们考虑在对抗环境中的强大学习模型。学习者获得未腐败的培训数据,并访问可能受到测试期间对手影响的可能腐败。学习者的目标是建立一个强大的分类器,该分类器将在未来的对抗示例中进行测试。每个输入的对手仅限于$ k $可能的损坏。我们将学习者 - 对手互动建模为零和游戏。该模型与Schmidt等人的对抗示例模型密切相关。 (2018); Madry等。 (2017)。我们的主要结果包括对二进制和多类分类的概括界限,以及实现的情况(回归)。对于二元分类设置,我们都拧紧Feige等人的概括。 (2015年),也能够处理无限假设类别。样本复杂度从$ o(\ frac {1} {\ epsilon^4} \ log(\ frac {| h |} {\ delta})$ to $ o \ big(\ frac {1} { epsilon^2}(kvc(h)\ log^{\ frac {3} {2}+\ alpha}(kvc(h))+\ log(\ frac {1} {\ delta} {\ delta})\ big)\ big)\ big)$ for任何$ \ alpha> 0 $。此外,我们将算法和概括从二进制限制到多类和真实价值的案例。一路上,我们获得了脂肪震惊的尺寸和$ k $ fold的脂肪的尺寸和Rademacher复杂性的结果最大值的功能类别;这些可能具有独立的兴趣。对于二进制分类,Feige等人(2015年)使用遗憾的最小化算法和Erm Oracle作为黑匣子;我们适应了多类和回归设置。该算法为我们提供了给定培训样本中的球员的近乎最佳政策。
translated by 谷歌翻译
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
translated by 谷歌翻译
Boosting是一种著名的机器学习方法,它基于将弱和适度不准确假设与强烈而准确的假设相结合的想法。我们研究了弱假设属于界限能力类别的假设。这个假设的灵感来自共同的惯例,即虚弱的假设是“易于学习的类别”中的“人数规则”。 (Schapire和Freund〜 '12,Shalev-Shwartz和Ben-David '14。)正式,我们假设弱假设类别具有有界的VC维度。我们关注两个主要问题:(i)甲骨文的复杂性:产生准确的假设需要多少个弱假设?我们设计了一种新颖的增强算法,并证明它绕过了由Freund和Schapire('95,'12)的经典下限。虽然下限显示$ \ omega({1}/{\ gamma^2})$弱假设有时是必要的,而有时则需要使用$ \ gamma $ -margin,但我们的新方法仅需要$ \ tilde {o}({1})({1}) /{\ gamma})$弱假设,前提是它们属于一类有界的VC维度。与以前的增强算法以多数票汇总了弱假设的算法不同,新的增强算法使用了更复杂(“更深”)的聚合规则。我们通过表明复杂的聚合规则实际上是规避上述下限是必要的,从而补充了这一结果。 (ii)表现力:通过提高有限的VC类的弱假设可以学习哪些任务?可以学到“遥远”的复杂概念吗?为了回答第一个问题,我们{介绍组合几何参数,这些参数捕获增强的表现力。}作为推论,我们为认真的班级的第二个问题提供了肯定的答案,包括半空间和决策树桩。一路上,我们建立并利用差异理论的联系。
translated by 谷歌翻译
A classical result in learning theory shows the equivalence of PAC learnability of binary hypothesis classes and the finiteness of VC dimension. Extending this to the multiclass setting was an open problem, which was settled in a recent breakthrough result characterizing multiclass PAC learnability via the DS dimension introduced earlier by Daniely and Shalev-Shwartz. In this work we consider list PAC learning where the goal is to output a list of $k$ predictions. List learning algorithms have been developed in several settings before and indeed, list learning played an important role in the recent characterization of multiclass learnability. In this work we ask: when is it possible to $k$-list learn a hypothesis class? We completely characterize $k$-list learnability in terms of a generalization of DS dimension that we call the $k$-DS dimension. Generalizing the recent characterization of multiclass learnability, we show that a hypothesis class is $k$-list learnable if and only if the $k$-DS dimension is finite.
translated by 谷歌翻译
We first prove that Littlestone classes, those which model theorists call stable, characterize learnability in a new statistical model: a learner in this new setting outputs the same hypothesis, up to measure zero, with probability one, after a uniformly bounded number of revisions. This fills a certain gap in the literature, and sets the stage for an approximation theorem characterizing Littlestone classes in terms of a range of learning models, by analogy to definability of types in model theory. We then give a complete analogue of Shelah's celebrated (and perhaps a priori untranslatable) Unstable Formula Theorem in the learning setting, with algorithmic arguments taking the place of the infinite.
translated by 谷歌翻译
We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests--based on a collection of losses and hypothesis class--a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature's true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses. This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.
translated by 谷歌翻译
我们研究了Massart噪声的PAC学习半圆的问题。给定标记的样本$(x,y)$从$ \ mathbb {r} ^ {d} ^ {d} \ times \ times \ {\ pm 1 \} $,这样的例子是任意的和标签$ y $ y $ y $ x $是由按萨塔特对手损坏的目标半空间与翻转概率$ \ eta(x)\ leq \ eta \ leq 1/2 $,目标是用小小的假设计算假设错误分类错误。这个问题的最佳已知$ \ mathrm {poly}(d,1 / \ epsilon)$时间算法实现$ \ eta + \ epsilon $的错误,这可能远离$ \ mathrm {opt} +的最佳界限\ epsilon $,$ \ mathrm {opt} = \ mathbf {e} _ {x \ sim d_x} [\ eta(x)] $。虽然已知实现$ \ mathrm {opt} + O(1)$误差需要超级多项式时间在统计查询模型中,但是在已知的上限和下限之间存在大的间隙。在这项工作中,我们基本上表征了统计查询(SQ)模型中Massart HalfSpaces的有效可读性。具体来说,我们表明,在$ \ mathbb {r} ^ d $中没有高效的sq算法用于学习massart halfpaces ^ d $可以比$ \ omega(\ eta)$更好地实现错误,即使$ \ mathrm {opt} = 2 ^ { - - \ log ^ {c}(d)$,适用于任何通用常量$ c \ in(0,1)$。此外,当噪声上限$ \ eta $接近$ 1/2 $时,我们的错误下限变为$ \ eta - o _ {\ eta}(1)$,其中$ o _ {\ eta}(1)$当$ \ eta $接近$ 1/2 $时,术语达到0美元。我们的结果提供了强有力的证据表明,大规模半空间的已知学习算法几乎是最可能的,从而解决学习理论中的长期开放问题。
translated by 谷歌翻译
我们研究了非参数在线回归中的快速收敛速度,即遗憾的是关于具有有界复杂度的任意函数类来定义后悔。我们的贡献是两倍: - 在绝对损失中的非参数网上回归的可实现设置中,我们提出了一种随机适当的学习算法,该算法在假设类的顺序脂肪破碎尺寸方面获得了近乎最佳的错误。在与一类Littlestone维度$ D $的在线分类中,我们的绑定减少到$ d \ cdot {\ rm poly} \ log t $。这结果回答了一个问题,以及适当的学习者是否可以实现近乎最佳错误的界限;以前,即使在线分类,绑定的最知名错误也是$ \ tilde o(\ sqrt {dt})$。此外,对于真实值(回归)设置,在这项工作之前,界定的最佳错误甚至没有以不正当的学习者所知。 - 使用上述结果,我们展示了Littlestone维度$ D $的一般总和二进制游戏的独立学习算法,每个玩家达到后悔$ \ tilde o(d ^ {3/4} \ cdot t ^ {1 / 4})$。该结果概括了Syrgkanis等人的类似结果。 (2015)谁表明,在有限的游戏中,最佳遗憾可以从普通的o(\ sqrt {t})$中的$ o(\ sqrt {t})为游戏设置中的$ o(t ^ {1/4})$。要建立上述结果,我们介绍了几种新技术,包括:分层聚合规则,以实现对实际类别的最佳错误,Hanneke等人的适当在线可实现学习者的多尺度扩展。 (2021),一种方法来表明这种非参数学习算法的输出是稳定的,并且证明Minimax定理在所有在线学习游戏中保持。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们研究了算法收到I.I.D的统计问题中对抗噪声模型的基本问题。从分发$ \ mathcal {d} $绘制。这些对手的定义指定了允许的损坏类型(噪声模型)以及可以进行这些损坏(适应性);后者区别了唯一可以损坏分发$ \ mathcal {d} $和适应性对手的疏忽,这些对手可以损坏他们的腐败依赖于从$ \ mathcal {d} $绘制的特定样本$ s $。在这项工作中,我们调查了在文献中研究的所有噪声模型中是否有效地相当于自适应对手。具体而言,算法$ \ mathcal {a} $的行为可以在不受算法$ \ mathcal {a}'$的情况下始终受到适应性对手的存在的良好近似?我们的第一个结果表明,这确实是在所有合理的噪声模型下广泛的统计查询算法的情况。然后,我们显示在附加噪声的具体情况下,这种等价物适用于所有算法。最后,我们将所有算法和所有合理的噪声模型中的最丰富的一般性映射到最完整的普遍性的方法。
translated by 谷歌翻译
解决机器学习模型的公平关注是朝着实际采用现实世界自动化系统中的至关重要的一步。尽管已经开发了许多方法来从数据培训公平模型,但对这些方法对数据损坏的鲁棒性知之甚少。在这项工作中,我们考虑在最坏情况下的数据操作下进行公平意识学习。我们表明,在某些情况下,对手可能会迫使任何学习者返回过度偏见的分类器,无论样本量如何,有或没有降解的准确性,并且多余的偏见的强度会增加数据中数据不足的受保护组的学习问题,而数据中有代表性不足的组。我们还证明,我们的硬度结果紧密到不断的因素。为此,我们研究了两种自然学习算法,以优化准确性和公平性,并表明这些算法在损坏比和较大数据限制中受保护的群体频率方面享有订单最佳的保证。
translated by 谷歌翻译
差异隐私通常使用比理论更大的隐私参数应用于理想的理想。已经提出了宽大隐私参数的各种非正式理由。在这项工作中,我们考虑了部分差异隐私(DP),该隐私允许以每个属性为基础量化隐私保证。在此框架中,我们研究了几个基本数据分析和学习任务,并设计了其每个属性隐私参数的算法,其较小的人(即所有属性)的最佳隐私参数比最佳的隐私参数。
translated by 谷歌翻译
我们建立了量子算法设计与电路下限之间的第一一般连接。具体来说,让$ \ mathfrak {c} $是一类多项式大小概念,假设$ \ mathfrak {c} $可以在统一分布下的成员查询,错误$ 1/2 - \ gamma $通过时间$ t $量子算法。我们证明如果$ \ gamma ^ 2 \ cdot t \ ll 2 ^ n / n $,则$ \ mathsf {bqe} \ nsubseteq \ mathfrak {c} $,其中$ \ mathsf {bqe} = \ mathsf {bque} [2 ^ {o(n)}] $是$ \ mathsf {bqp} $的指数时间模拟。在$ \ gamma $和$ t $中,此结果是最佳的,因为它不难学习(经典)时间$ t = 2 ^ n $(没有错误) ,或在Quantum Time $ t = \ mathsf {poly}(n)$以傅立叶采样为单位为1/2美元(2 ^ { - n / 2})$。换句话说,即使对这些通用学习算法的边际改善也会导致复杂性理论的主要后果。我们的证明在学习理论,伪随机性和计算复杂性的几个作品上构建,并且至关重要地,在非凡的经典学习算法与由Oliveira和Santhanam建立的电路下限之间的联系(CCC 2017)。扩展他们对量子学习算法的方法,结果产生了重大挑战。为此,我们展示了伪随机发电机如何以通用方式意味着学习到较低的连接,构建针对均匀量子计算的第一个条件伪随机发生器,并扩展了Impagliazzo,JaiSwal的本地列表解码算法。 ,Kabanets和Wigderson(Sicomp 2010)通过微妙的分析到量子电路。我们认为,这些贡献是独立的兴趣,可能会发现其他申请。
translated by 谷歌翻译
使用差异隐私(DP)学习的大多数工作都集中在每个用户具有单个样本的设置上。在这项工作中,我们考虑每个用户持有M $ Samples的设置,并且在每个用户数据的级别强制执行隐私保护。我们展示了,在这个设置中,我们可以学习少数用户。具体而言,我们表明,只要每个用户收到足够多的样本,我们就可以通过$(\ epsilon,\ delta)$ - dp算法使用$ o(\ log(1 / \ delta)来学习任何私人学习的课程/ \ epsilon)$用户。对于$ \ epsilon $ -dp算法,我们展示我们即使在本地模型中也可以使用$ o _ {\ epsilon}(d)$用户学习,其中$ d $是概率表示维度。在这两种情况下,我们在所需用户数量上显示了几乎匹配的下限。我们的结果的一个关键组成部分是全局稳定性的概括[Bun等,Focs 2020]允许使用公共随机性。在这种轻松的概念下,我们采用相关的采样策略来表明全局稳定性可以在样品数量的多项式牺牲中被提升以任意接近一个。
translated by 谷歌翻译
给定真实的假设类$ \ mathcal {h} $,我们在什么条件下调查有一个差异的私有算法,它从$ \ mathcal {h} $给出的最佳假设.I.i.d.数据。灵感来自最近的成果的二进制分类的相关环境(Alon等,2019; Bun等,2020),其中显示了二进制类的在线学习是必要的,并且足以追随其私人学习,Jung等人。 (2020)显示,在回归的设置中,$ \ mathcal {h} $的在线学习是私人可读性所必需的。这里的在线学习$ \ mathcal {h} $的特点是其$ \ eta $-sequentient胖胖子的优势,$ {\ rm sfat} _ \ eta(\ mathcal {h})$,适用于所有$ \ eta> 0 $。就足够的私人学习条件而言,Jung等人。 (2020)显示$ \ mathcal {h} $私下学习,如果$ \ lim _ {\ eta \ downarrow 0} {\ rm sfat} _ \ eta(\ mathcal {h})$是有限的,这是一个相当限制的健康)状况。我们展示了在轻松的条件下,\ LIM \ INF _ {\ eta \ downarrow 0} \ eta \ cdot {\ rm sfat} _ \ eta(\ mathcal {h})= 0 $,$ \ mathcal {h} $私人学习,为\ \ rm sfat} _ \ eta(\ mathcal {h})$ \ eta \ dockarrow 0 $ divering建立第一个非参数私人学习保证。我们的技术涉及一种新颖的过滤过程,以输出非参数函数类的稳定假设。
translated by 谷歌翻译
我们介绍了一个普遍的框架,用于表征差异隐私保证的统计估算问题的统计效率。我们的框架,我们呼叫高维建议 - 试验释放(HPTR),在三个重要组件上建立:指数机制,强大的统计和提议 - 试验释放机制。将所有这些粘在一起是恢复力的概念,这是强大的统计估计的核心。弹性指导算法的设计,灵敏度分析和试验步骤的成功概率分析。关键识别是,如果我们设计了一种仅通过一维鲁棒统计数据访问数据的指数机制,则可以大大减少所产生的本地灵敏度。使用弹性,我们可以提供紧密的本地敏感界限。这些紧张界限在几个案例中容易转化为近乎最佳的实用程序。我们给出了将HPTR应用于统计估计问题的给定实例的一般配方,并在平均估计,线性回归,协方差估计和主成分分析的规范问题上证明了它。我们介绍了一般的公用事业分析技术,证明了HPTR几乎在文献中研究的若干场景下实现了最佳的样本复杂性。
translated by 谷歌翻译