弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
Semi-supervised object detection (SSOD) aims to boost detection performance by leveraging extra unlabeled data. The teacher-student framework has been shown to be promising for SSOD, in which a teacher network generates pseudo-labels for unlabeled data to assist the training of a student network. Since the pseudo-labels are noisy, filtering the pseudo-labels is crucial to exploit the potential of such framework. Unlike existing suboptimal methods, we propose a two-step pseudo-label filtering for the classification and regression heads in a teacher-student framework. For the classification head, OCL (Object-wise Contrastive Learning) regularizes the object representation learning that utilizes unlabeled data to improve pseudo-label filtering by enhancing the discriminativeness of the classification score. This is designed to pull together objects in the same class and push away objects from different classes. For the regression head, we further propose RUPL (Regression-Uncertainty-guided Pseudo-Labeling) to learn the aleatoric uncertainty of object localization for label filtering. By jointly filtering the pseudo-labels for the classification and regression heads, the student network receives better guidance from the teacher network for object detection task. Experimental results on Pascal VOC and MS-COCO datasets demonstrate the superiority of our proposed method with competitive performance compared to existing methods.
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
弱监督对象检测(WSOD)旨在仅训练需要图像级注释的对象检测器。最近,一些作品设法选择了从训练有素的WSOD网络生成的准确框,以监督半监督的检测框架以提高性能。但是,这些方法只需根据图像级标准将设置的训练分为标记和未标记的集合,从而选择了足够的错误标记或错误的局部盒子预测作为伪基真正的真实性,从而产生了次优的检测性能解决方案。为了克服这个问题,我们提出了一个新颖的WSOD框架,其新范式从弱监督到嘈杂的监督(W2N)。通常,通过训练有素的WSOD网络产生的给定的伪基真实性,我们提出了一种两模块迭代训练算法来完善伪标签并逐步监督更好的对象探测器。在定位适应模块中,我们提出正规化损失,以减少原始伪基真实性中判别零件的比例,从而获得更好的伪基真实性,以进行进一步的训练。在半监督的模块中,我们提出了两个任务实例级拆分方法,以选择用于训练半监督检测器的高质量标签。不同基准测试的实验结果验证了W2N的有效性,我们的W2N优于所有现有的纯WSOD方法和转移学习方法。我们的代码可在https://github.com/1170300714/w2n_wsod上公开获得。
translated by 谷歌翻译
基于多个实例检测网络(MIDN),大量作品为弱监督对象检测(WSOD)做出了巨大的努力。但是,大多数方法忽略了一个事实,即在训练阶段每个图像中都存在压倒性的负面实例,这会误导培训并使网络落入本地最小值。为了解决这个问题,本文提出了基于硬采样和软采样的在线渐进式实例平衡采样(OPI)算法。该算法包括两个模块:渐进式实例平衡(PIB)模块和渐进式实例重新加权(PIR)模块。 PIB模块结合了随机抽样和iou均衡采样,逐渐地挖掘出硬性实例,同时平衡积极实例和负面实例。 PIR模块进一步利用了分类器得分和相邻的改进,以重新获得使网络关注积极实例的积极实例的权重。 Pascal VOC 2007和2012数据集的广泛实验结果表明,所提出的方法可以显着改善基线,这也可与许多现有的最新结果相媲美。此外,与基线相比,所提出的方法不需要额外的网络参数,并且补充培训开销很小,可以根据实例分类器修补范式轻松地集成到其他方法中。
translated by 谷歌翻译
研究表明,当训练数据缺少注释时,对象检测器的性能下降,即稀疏注释数据。当代方法专注于缺少地面实话注释的代理,无论是伪标签的形式还是通过在训练期间重新称重梯度。在这项工作中,我们重新审视了稀疏注释物体检测的制定。我们观察到稀疏注释的物体检测可以被认为是区域级的半监督对象检测问题。在此洞察力上,我们提出了一种基于区域的半监督算法,它自动识别包含未标记的前景对象的区域。我们的算法然后以不同的方式处理标记和未标记的前景区域,在半监督方法中进行常见做法。为了评估所提出的方法的有效性,我们对普斯卡尔库尔和可可数据集的稀疏注释方法常用的五种分裂进行详尽的实验,并实现最先进的性能。除此之外,我们还表明,我们的方法在标准半监督设置上实现了竞争性能,证明了我们的方法的实力和广泛适用性。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
接受注释较弱的对象探测器是全面监督者的负担得起的替代方案。但是,它们之间仍然存在显着的性能差距。我们建议通过微调预先训练的弱监督检测器来缩小这一差距,并使用``Box-In-box''(bib'(bib)自动从训练集中自动选择了一些完全注销的样品,这是一种新颖的活跃学习专门针对弱势监督探测器的据可查的失败模式而设计的策略。 VOC07和可可基准的实验表明,围嘴表现优于其他活跃的学习技术,并显着改善了基本的弱监督探测器的性能,而每个类别仅几个完全宣布的图像。围嘴达到了完全监督的快速RCNN的97%,在VOC07上仅10%的全已通量图像。在可可(COCO)上,平均每类使用10张全面通量的图像,或同等的训练集的1%,还减少了弱监督检测器和完全监督的快速RCN之间的性能差距(In AP)以上超过70% ,在性能和数据效率之间表现出良好的权衡。我们的代码可在https://github.com/huyvvo/bib上公开获取。
translated by 谷歌翻译
Weakly-supervised object detection (WSOD) models attempt to leverage image-level annotations in lieu of accurate but costly-to-obtain object localization labels. This oftentimes leads to substandard object detection and localization at inference time. To tackle this issue, we propose D2DF2WOD, a Dual-Domain Fully-to-Weakly Supervised Object Detection framework that leverages synthetic data, annotated with precise object localization, to supplement a natural image target domain, where only image-level labels are available. In its warm-up domain adaptation stage, the model learns a fully-supervised object detector (FSOD) to improve the precision of the object proposals in the target domain, and at the same time learns target-domain-specific and detection-aware proposal features. In its main WSOD stage, a WSOD model is specifically tuned to the target domain. The feature extractor and the object proposal generator of the WSOD model are built upon the fine-tuned FSOD model. We test D2DF2WOD on five dual-domain image benchmarks. The results show that our method results in consistently improved object detection and localization compared with state-of-the-art methods.
translated by 谷歌翻译
多年来,使用单点监督的对象检测受到了越来越多的关注。在本文中,我们将如此巨大的性能差距归因于产生高质量的提案袋的失败,这对于多个实例学习至关重要(MIL)。为了解决这个问题,我们引入了现成建议方法(OTSP)方法的轻量级替代方案,从而创建点对点网络(P2BNET),该网络可以通过在中生成建议袋来构建一个互平衡的提案袋一种锚点。通过充分研究准确的位置信息,P2BNET进一步构建了一个实例级袋,避免了多个物体的混合物。最后,以级联方式进行的粗到精细政策用于改善提案和地面真相(GT)之间的IOU。从这些策略中受益,P2BNET能够生产出高质量的实例级袋以进行对象检测。相对于MS可可数据集中的先前最佳PSOD方法,P2BNET将平均平均精度(AP)提高了50%以上。它还证明了弥合监督和边界盒监督检测器之间的性能差距的巨大潜力。该代码将在github.com/ucas-vg/p2bnet上发布。
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
虽然现有的语义分割方法实现令人印象深刻的结果,但它们仍然努力将其模型逐步更新,因为新类别被发现。此外,逐个像素注释昂贵且耗时。本文提出了一种新颖的对语义分割学习弱增量学习的框架,旨在学习从廉价和大部分可用的图像级标签进行新课程。与现有的方法相反,需要从下线生成伪标签,我们使用辅助分类器,用图像级标签培训并由分段模型规范化,在线获取伪监督并逐步更新模型。我们通过使用由辅助分类器生成的软标签来应对过程中的内在噪声。我们展示了我们对Pascal VOC和Coco数据集的方法的有效性,表现出离线弱监督方法,并获得了具有全面监督的增量学习方法的结果。
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Unsupervised object discovery aims to localize objects in images, while removing the dependence on annotations required by most deep learning-based methods. To address this problem, we propose a fully unsupervised, bottom-up approach, for multiple objects discovery. The proposed approach is a two-stage framework. First, instances of object parts are segmented by using the intra-image similarity between self-supervised local features. The second step merges and filters the object parts to form complete object instances. The latter is performed by two CNN models that capture semantic information on objects from the entire dataset. We demonstrate that the pseudo-labels generated by our method provide a better precision-recall trade-off than existing single and multiple objects discovery methods. In particular, we provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
translated by 谷歌翻译
We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.
translated by 谷歌翻译
The field of object detection has made significant advances riding on the wave of region-based ConvNets, but their training procedure still includes many heuristics and hyperparameters that are costly to tune. We present a simple yet surprisingly effective online hard example mining (OHEM) algorithm for training region-based ConvNet detectors. Our motivation is the same as it has always beendetection datasets contain an overwhelming number of easy examples and a small number of hard examples. Automatic selection of these hard examples can make training more effective and efficient. OHEM is a simple and intuitive algorithm that eliminates several heuristics and hyperparameters in common use. But more importantly, it yields consistent and significant boosts in detection performance on benchmarks like PASCAL VOC 2007 and 2012. Its effectiveness increases as datasets become larger and more difficult, as demonstrated by the results on the MS COCO dataset. Moreover, combined with complementary advances in the field, OHEM leads to state-of-the-art results of 78.9% and 76.3% mAP on PASCAL VOC 2007 and 2012 respectively.
translated by 谷歌翻译
本文的目的是几次拍摄对象检测(FSOD) - 仅为新类别扩展对象探测器的任务仅给出了一些培训实例。我们介绍了一种简单的伪标签方法来源从训练集提供高质量的伪注释,因为每个新类别,大大增加培训实例的数量和减少类别的不平衡;我们的方法找到了先前未标记的实例。 NA \“IVELY培训使用模型预测产生了次优性能;我们提出了两种提高伪标签过程的精度的新方法:首先,我们引入了一种验证技术,以删除候选人检测,不正确的类标签;第二,我们训练一个专门的模型,可以纠正差的质量边界箱。在这两种新颖步骤之后,我们获得了一大集的高质量伪注释,允许我们的最终探测器培训结束到底。另外,我们展示了我们的方法维护基础类性能,以及FSOD中简单增强的实用性。在Pascal VOC和MS-Coco基准测试的同时,我们的方法与所有射击镜头的现有方法相比,实现了最先进的或第二个最佳性能。
translated by 谷歌翻译
Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.
translated by 谷歌翻译
在真实世界的环境中,可以通过对象检测器连续遇到来自新类的对象实例。当现有的对象探测器应用于这种情况时,它们在旧课程上的性能显着恶化。据报道,一些努力解决了这个限制,所有这些限制适用于知识蒸馏的变体,以避免灾难性的遗忘。我们注意到虽然蒸馏有助于保留以前的学习,但它阻碍了对新任务的快速适应性,这是增量学习的关键要求。在这种追求中,我们提出了一种学习方法,可以学习重塑模型梯度,使得跨增量任务的信息是最佳的共享。这可通过META学习梯度预处理来确保无缝信息传输,可最大限度地减少遗忘并最大化知识传输。与现有的元学习方法相比,我们的方法是任务不可知,允许将新类的增量添加到对象检测的高容量模型中。我们在Pascal-VOC和MS Coco Datasets上定义的各种增量学习设置中评估了我们的方法,我们的方法对最先进的方法进行了好评。
translated by 谷歌翻译