多年来,使用单点监督的对象检测受到了越来越多的关注。在本文中,我们将如此巨大的性能差距归因于产生高质量的提案袋的失败,这对于多个实例学习至关重要(MIL)。为了解决这个问题,我们引入了现成建议方法(OTSP)方法的轻量级替代方案,从而创建点对点网络(P2BNET),该网络可以通过在中生成建议袋来构建一个互平衡的提案袋一种锚点。通过充分研究准确的位置信息,P2BNET进一步构建了一个实例级袋,避免了多个物体的混合物。最后,以级联方式进行的粗到精细政策用于改善提案和地面真相(GT)之间的IOU。从这些策略中受益,P2BNET能够生产出高质量的实例级袋以进行对象检测。相对于MS可可数据集中的先前最佳PSOD方法,P2BNET将平均平均精度(AP)提高了50%以上。它还证明了弥合监督和边界盒监督检测器之间的性能差距的巨大潜力。该代码将在github.com/ucas-vg/p2bnet上发布。
translated by 谷歌翻译
边界盒注释表单是可视对象本地化任务最常用的方法。然而,边界盒注释依赖于大量的精确注释的边界盒,这是昂贵的,艰苦的,因此在实际情况下是不可能的,对于某些应用而言,关心尺寸的一些应用甚至是多余的。因此,我们通过将每个人作为粗略点(COARSOPPOINT)向每个人提供注释来提出一种基于点的基于点的框架,该框架可以是对象范围内的任何点,而不是精确的边界框。然后将该人的位置预测为图像中的2D坐标。大大简化了数据注释管道。然而,COARSOUNTPOINT注释不可避免地导致标签可靠性降低(标签不确定性)和训练期间的网络混淆。因此,我们提出了一种点自我细化方法,它以自重节奏的方式迭代地更新点注释。拟议的细化系统减轻了标签不确定性,逐步提高了本地化绩效。实验表明,我们的方法可实现对象本地化性能,同时保存注释成本高达80 $ \%$。代码括在补充材料中。
translated by 谷歌翻译
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the predefined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating overlapping during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often very sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), FCOS with ResNeXt-64x4d-101 achieves 44.7% in AP with single-model and single-scale testing, surpassing previous one-stage detectors with the advantage of being much simpler. For the first time, we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at:tinyurl.com/FCOSv1
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Modern object detectors rely heavily on rectangular bounding boxes, such as anchors, proposals and the final predictions, to represent objects at various recognition stages. The bounding box is convenient to use but provides only a coarse localization of objects and leads to a correspondingly coarse extraction of object features. In this paper, we present RepPoints (representative points), a new finer representation of objects as a set of sample points useful for both localization and recognition. Given ground truth localization and recognition targets for training, RepPoints learn to automatically arrange themselves in a manner that bounds the spatial extent of an object and indicates semantically significant local areas. They furthermore do not require the use of anchors to sample a space of bounding boxes. We show that an anchor-free object detector based on RepPoints can be as effective as the state-of-the-art anchor-based detection methods, with 46.5 AP and 67.4 AP 50 on the COCO test-dev detection benchmark, using ResNet-101 model. Code is available at https://github.com/microsoft/RepPoints.
translated by 谷歌翻译
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
translated by 谷歌翻译
大多数最先进的实例级人类解析模型都采用了两阶段的基于锚的探测器,因此无法避免启发式锚盒设计和像素级别缺乏分析。为了解决这两个问题,我们设计了一个实例级人类解析网络,该网络在像素级别上无锚固且可解决。它由两个简单的子网络组成:一个用于边界框预测的无锚检测头和一个用于人体分割的边缘引导解析头。无锚探测器的头继承了像素样的优点,并有效地避免了对象检测应用中证明的超参数的敏感性。通过引入部分感知的边界线索,边缘引导的解析头能够将相邻的人类部分与彼此区分开,最多可在一个人类实例中,甚至重叠的实例。同时,利用了精炼的头部整合盒子级别的分数和部分分析质量,以提高解析结果的质量。在两个多个人类解析数据集(即CIHP和LV-MHP-V2.0)和一个视频实例级人类解析数据集(即VIP)上进行实验,表明我们的方法实现了超过全球级别和实例级别的性能最新的一阶段自上而下的替代方案。
translated by 谷歌翻译
检测微小的物体是一个非常具有挑战性的问题,因为一个小物体只包含几个像素的大小。我们证明,由于缺乏外观信息,最新的检测器不会对微小物体产生令人满意的结果。我们的主要观察结果是,基于联合(IOU)的相交(例如IOU本身及其扩展)对微小物体的位置偏差非常敏感,并且在基于锚固的检测器中使用时会大大恶化检测性能。为了减轻这一点,我们提出了使用Wasserstein距离进行微小对象检测的新评估度量。具体而言,我们首先将边界框建模为2D高斯分布,然后提出一个新的公制称为标准化的瓦斯汀距离(NWD),以通过相应的高斯分布来计算它们之间的相似性。提出的NWD度量可以轻松地嵌入分配中,非最大抑制作用以及任何基于锚固的检测器的损耗函数,以替换常用的IOU度量。我们在新的数据集上评估了我们的度量,以用于微小对象检测(AI-TOD),其中平均对象大小比现有对象检测数据集小得多。广泛的实验表明,在配备NWD指标时,我们的方法的性能比标准的微调基线高6.7 AP点,并且比最先进的竞争对手高6.0 AP点。代码可在以下网址提供:https://github.com/jwwangchn/nwd。
translated by 谷歌翻译
现有的实例分割方法已经达到了令人印象深刻的表现,但仍遭受了共同的困境:一个实例推断出冗余表示(例如,多个框,网格和锚点),这导致了多个重复的预测。因此,主流方法通常依赖于手工设计的非最大抑制(NMS)后处理步骤来选择最佳预测结果,这会阻碍端到端训练。为了解决此问题,我们建议一个称为Uniinst的无盒和无端机实例分割框架,该框架仅对每个实例产生一个唯一的表示。具体而言,我们设计了一种实例意识到的一对一分配方案,即仅产生一个表示(Oyor),该方案根据预测和地面真相之间的匹配质量,动态地为每个实例动态分配一个独特的表示。然后,一种新颖的预测重新排列策略被优雅地集成到框架中,以解决分类评分和掩盖质量之间的错位,从而使学习的表示形式更具歧视性。借助这些技术,我们的Uniinst,第一个基于FCN的盒子和无NMS实例分段框架,实现竞争性能,例如,使用Resnet-50-FPN和40.2 mask AP使用Resnet-101-FPN,使用Resnet-50-FPN和40.2 mask AP,使用Resnet-101-FPN,对抗AP可可测试-DEV的主流方法。此外,提出的实例感知方法对于遮挡场景是可靠的,在重锁定的ochuman基准上,通过杰出的掩码AP优于公共基线。我们的代码将在出版后提供。
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
复杂的水下环境为物体检测带来了新的挑战,例如未平衡的光条件,低对比度,阻塞和水生生物的模仿。在这种情况下,水下相机捕获的物体将变得模糊,并且通用探测器通常会在这些模糊的物体上失败。这项工作旨在从两个角度解决问题:不确定性建模和艰难的例子采矿。我们提出了一个名为Boosting R-CNN的两阶段水下检测器,该检测器包括三个关键组件。首先,提出了一个名为RetinArpn的新区域建议网络,该网络提供了高质量的建议,并考虑了对象和IOU预测,以确定对象事先概率的不确定性。其次,引入了概率推理管道,以结合第一阶段的先验不确定性和第二阶段分类评分,以模拟最终检测分数。最后,我们提出了一种名为Boosting Reweighting的新的硬示例挖掘方法。具体而言,当区域提案网络误认为样品的对象的事先概率时,提高重新加权将在训练过程中增加R-CNN头部样品的分类损失,同时减少具有准确估计的先验的简易样品丢失。因此,可以在第二阶段获得强大的检测头。在推理阶段,R-CNN具有纠正第一阶段的误差以提高性能的能力。在两个水下数据集和两个通用对象检测数据集上进行的全面实验证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
DETR方法中引入的查询机制正在改变对象检测的范例,最近有许多基于查询的方法获得了强对象检测性能。但是,当前基于查询的检测管道遇到了以下两个问题。首先,需要多阶段解码器来优化随机初始化的对象查询,从而产生较大的计算负担。其次,训练后的查询是固定的,导致不满意的概括能力。为了纠正上述问题,我们在较快的R-CNN框架中提出了通过查询生成网络预测的特征对象查询,并开发了一个功能性的查询R-CNN。可可数据集的广泛实验表明,我们的特征查询R-CNN获得了所有R-CNN探测器的最佳速度准确性权衡,包括最近的最新稀疏R-CNN检测器。该代码可在\ url {https://github.com/hustvl/featurized-queryrcnn}中获得。
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
学习准确的对象探测器通常需要具有精确对象边界框的大规模培训数据。但是,标记此类数据是昂贵且耗时的。随着众包标签过程和对象的歧义可能会引起嘈杂的边界盒注释,对象探测器将遭受退化的训练数据。在这项工作中,我们旨在应对使用不准确的边界框来学习健壮对象探测器的挑战。受到以下事实的启发:本地化精度在分类精度不准确的框中显着遭受不准确的框架的影响,我们建议将分类作为用于完善定位结果的指导信号。具体而言,通过将对象视为一袋实例,我们引入了一种对象感知的多个实例学习方法(OA-MIL),其中具有对象感知的实例选择和对象感知实例扩展。前者旨在选择准确的培训实例,而不是直接使用不准确的框注释。后者的重点是生成高质量的选择实例。关于合成嘈杂数据集的广泛实验(即嘈杂的Pascal VOC和MS-Coco)和真正的嘈杂小麦头数据集证明了我们OA-MIL的有效性。代码可从https://github.com/cxliu0/oa-mil获得。
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
半弱监督和监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功训练深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生老师模型,并大量数据增强。为弱监督的设置开发了自定义网络,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分全标记的图像,并在弱标记图像中提供信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象建议的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释的适度投资可以大大改善检测性能。
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
对象检测是一项基本的计算机视觉任务,用于在给定图像中loccal和分类对象。大多数最先进的检测方法都利用固定数量的建议作为对象候选物的中间表示,在推理过程中无法适应不同的计算约束。在本文中,我们提出了一种简单而有效的方法,该方法通过生成动态提案以进行对象检测来适应不同的计算资源。我们首先设计一个模块来制作一个基于查询的模型,以便能够使用不同数量的建议进行推断。此外,我们将其扩展到动态模型,以根据输入图像选择建议数量,从而大大降低了计算成本。我们的方法在广泛的检测模型中实现了显着的加速,包括两阶段和基于查询的模型,同时获得相似甚至更好的准确性。
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译