本文的目的是几次拍摄对象检测(FSOD) - 仅为新类别扩展对象探测器的任务仅给出了一些培训实例。我们介绍了一种简单的伪标签方法来源从训练集提供高质量的伪注释,因为每个新类别,大大增加培训实例的数量和减少类别的不平衡;我们的方法找到了先前未标记的实例。 NA \“IVELY培训使用模型预测产生了次优性能;我们提出了两种提高伪标签过程的精度的新方法:首先,我们引入了一种验证技术,以删除候选人检测,不正确的类标签;第二,我们训练一个专门的模型,可以纠正差的质量边界箱。在这两种新颖步骤之后,我们获得了一大集的高质量伪注释,允许我们的最终探测器培训结束到底。另外,我们展示了我们的方法维护基础类性能,以及FSOD中简单增强的实用性。在Pascal VOC和MS-Coco基准测试的同时,我们的方法与所有射击镜头的现有方法相比,实现了最先进的或第二个最佳性能。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
研究表明,当训练数据缺少注释时,对象检测器的性能下降,即稀疏注释数据。当代方法专注于缺少地面实话注释的代理,无论是伪标签的形式还是通过在训练期间重新称重梯度。在这项工作中,我们重新审视了稀疏注释物体检测的制定。我们观察到稀疏注释的物体检测可以被认为是区域级的半监督对象检测问题。在此洞察力上,我们提出了一种基于区域的半监督算法,它自动识别包含未标记的前景对象的区域。我们的算法然后以不同的方式处理标记和未标记的前景区域,在半监督方法中进行常见做法。为了评估所提出的方法的有效性,我们对普斯卡尔库尔和可可数据集的稀疏注释方法常用的五种分裂进行详尽的实验,并实现最先进的性能。除此之外,我们还表明,我们的方法在标准半监督设置上实现了竞争性能,证明了我们的方法的实力和广泛适用性。
translated by 谷歌翻译
这项工作的目的是使用零手动注释建立可扩展的管道,以将对象检测器扩展到新颖/看不见的类别。为此,我们做出以下四个贡献:(i)追求概括,我们提出了一个两阶段的开放式摄制对象检测器,其中类无形的对象建议与预先训练的视觉视觉训练的文本编码一起分类语言模型; (ii)要将视觉潜在空间(RPN框建议)与预训练的文本编码器配对,我们提出了区域提示的概念,以学习将文本嵌入空间与区域视觉对象特征相结合; (iii)为了扩展学习过程以检测更广泛的对象,我们通过新颖的自我训练框架利用可用的在线资源,该框架允许在嘈杂的未经图像的网络图像上训练所提出的检测器。最后,(iv)评估我们所提出的检测器,称为及时插图,我们对具有挑战性的LVI和MS-COCO数据集进行了广泛的实验。提示件表现出优于现有方法的卓越性能,而其他培训图像和零手动注释较少。带代码的项目页面:https://fcjian.github.io/promptdet。
translated by 谷歌翻译
由于新型神经网络体系结构的设计和大规模数据集的可用性,对象检测方法在过去几年中取得了令人印象深刻的改进。但是,当前的方法有一个重要的限制:他们只能检测到在训练时间内观察到的类,这只是检测器在现实世界中可能遇到的所有类的子集。此外,在训练时间通常不考虑未知类别的存在,从而导致方法甚至无法检测到图像中存在未知对象。在这项工作中,我们解决了检测未知对象的问题,称为开放集对象检测。我们提出了一种名为Unkad的新颖培训策略,能够预测未知的对象,而无需对其进行任何注释,利用训练图像背景中已经存在的非注释对象。特别是,unkad首先利用更快的R-CNN的四步训练策略,识别和伪标签未知对象,然后使用伪通量来训练其他未知类。尽管UNKAD可以直接检测未知的对象,但我们将其与以前未知的检测技术相结合,表明它不成本就可以提高其性能。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
在真实世界的环境中,可以通过对象检测器连续遇到来自新类的对象实例。当现有的对象探测器应用于这种情况时,它们在旧课程上的性能显着恶化。据报道,一些努力解决了这个限制,所有这些限制适用于知识蒸馏的变体,以避免灾难性的遗忘。我们注意到虽然蒸馏有助于保留以前的学习,但它阻碍了对新任务的快速适应性,这是增量学习的关键要求。在这种追求中,我们提出了一种学习方法,可以学习重塑模型梯度,使得跨增量任务的信息是最佳的共享。这可通过META学习梯度预处理来确保无缝信息传输,可最大限度地减少遗忘并最大化知识传输。与现有的元学习方法相比,我们的方法是任务不可知,允许将新类的增量添加到对象检测的高容量模型中。我们在Pascal-VOC和MS Coco Datasets上定义的各种增量学习设置中评估了我们的方法,我们的方法对最先进的方法进行了好评。
translated by 谷歌翻译
半弱监督和监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功训练深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生老师模型,并大量数据增强。为弱监督的设置开发了自定义网络,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分全标记的图像,并在弱标记图像中提供信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象建议的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释的适度投资可以大大改善检测性能。
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.
translated by 谷歌翻译
即使在几个例子中,人类能够学会识别新物品。相比之下,培训基于深度学习的对象探测器需要大量的注释数据。为避免需求获取和注释这些大量数据,但很少拍摄的对象检测旨在从目标域中的新类别的少数对象实例中学习。在本调查中,我们在几次拍摄对象检测中概述了本领域的状态。我们根据培训方案和建筑布局分类方法。对于每种类型的方法,我们描述了一般的实现以及提高新型类别性能的概念。在适当的情况下,我们在这些概念上给出短暂的外卖,以突出最好的想法。最终,我们介绍了常用的数据集及其评估协议,并分析了报告的基准结果。因此,我们强调了评估中的共同挑战,并确定了这种新兴对象检测领域中最有前景的电流趋势。
translated by 谷歌翻译
弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
由于检测数据集的规模小,当前对象探测器的词汇量受到限制。另一方面,图像分类器的原因是大约更大的词汇表,因为他们的数据集更大,更容易收集。我们提出守则,只需在图像分类数据上培训检测器的分类器,从而扩展了探测器的词汇量到数万个概念。与现有工作不同,拒绝不会根据模型预测将图像标签分配给框,使其更容易实现和兼容一系列检测架构和骨架。我们的结果表明,即使没有箱子注释,否则差异也能产生出色的探测器。它优于开放词汇和长尾检测基准的事先工作。拒绝为所有类和8.3地图提供了2.4地图的增益,用于开放词汇LVIS基准测试中的新型类。在标准的LVIS基准测试中,守护者达到41.7地图所有课程和41.7地图以获得罕见课程。我们首次培训一个探测器,其中包含所有二十一千类的ImageNet数据集,并显示它在没有微调的情况下推广到新数据集。代码可在https://github.com/facebookresearch/dorm提供。
translated by 谷歌翻译
对对象探测器的监督培训需要良好的注释大规模数据集,其生产昂贵。因此,已经努力以经济的方式获得注释,例如云采购。但是,通过这些方法获得的数据集倾向于含有嘈杂的注释,例如不准确的边界框和不正确的类标签。在这项研究中,我们提出了一个新的问题在数据集上训练对象探测器的训练对象探测器,其中包含类标签和边界框的注释的纠缠漏洞。我们所提出的方法有效地解耦了缠绕的噪声,纠正了嘈杂的注释,然后使用纠正的注释训练探测器。我们验证了我们提出的方法的有效性,并将其与具有不同噪声水平的噪声数据集的基线进行了比较。实验结果表明,我们所提出的方法显着优于基线。
translated by 谷歌翻译
基于深度学习的对象建议方法已在许多计算机视觉管道中取得了重大进展。但是,当前的最新提案网络使用封闭世界的假设,这意味着它们仅接受培训以检测培训课程的实例,同时将每个其他区域视为背景。这种解决方案的样式无法对分发对象进行高度召回,因此可以在可以观察到新颖的对象类别类别的现实开放世界应用程序中使用它。为了更好地检测所有对象,我们提出了一个无分类的自我训练的建议网络(STPN),该提案网络(STPN)利用了一种新型的自我训练优化策略,并结合了动态加权损失功能,以解决诸如类不平衡和伪标签的不确定性之类的挑战。我们的模型不仅旨在在现有的乐观开放世界基准中表现出色,而且在具有重大标签偏见的具有挑战性的操作环境中。为了展示这一点,当培训数据包含(1)标记类中的多样性较小,并且(2)标记实例较少时,我们就设计了两个挑战来测试建议模型的概括。我们的结果表明,STPN在所有任务上都实现了最新的对象概括。
translated by 谷歌翻译
最近对物体检测的自我监督预防方法在很大程度上专注于预先绘制物体探测器的骨干,忽略了检测架构的关键部分。相反,我们介绍了DetReg,这是一种新的自我监督方法,用于预先列出整个对象检测网络,包括对象本地化和嵌入组件。在预先绘制期间,DetReg预测对象本地化以与无监督区域提议生成器匹配本地化,并同时将相应的特征嵌入与自我监控图像编码器的嵌入式对齐。我们使用DETR系列探测器实施DetReg,并显示它在Coco,Pascal VOC和空中客车船基准上的Fineetuned时改善了竞争性基线。在低数据制度中,包括半监督和几秒钟学习设置,DetReg建立了许多最先进的结果,例如,在Coco上,我们看到10次检测和+3.5的AP改进A +6.0 AP改进当培训只有1%的标签时。对于代码和预用模型,请访问https://amirbar.net/detreg的项目页面
translated by 谷歌翻译
用于对象检测的注释边界框很昂贵,耗时且容易出错。在这项工作中,我们提出了一个基于DITR的框架,该框架旨在在部分注释的密集场景数据集中明确完成丢失的注释。这减少了注释场景中的每个对象实例,从而降低注释成本。完成DETR解码器中的对象查询,并使用图像中对象的补丁信息。结合匹配损失,它可以有效地找到与输入补丁相似的对象并完成丢失的注释。我们表明,我们的框架优于最先进的方法,例如软采样和公正的老师,同时可以与这些方法一起使用以进一步提高其性能。我们的框架对下游对象探测器的选择也不可知。我们显示了多个流行探测器的性能改进,例如在多个密集的场景数据集中更快的R-CNN,CASCADE R-CNN,CENTERNET2和可变形的DETR。
translated by 谷歌翻译
弱监督对象检测(WSOD)旨在仅训练需要图像级注释的对象检测器。最近,一些作品设法选择了从训练有素的WSOD网络生成的准确框,以监督半监督的检测框架以提高性能。但是,这些方法只需根据图像级标准将设置的训练分为标记和未标记的集合,从而选择了足够的错误标记或错误的局部盒子预测作为伪基真正的真实性,从而产生了次优的检测性能解决方案。为了克服这个问题,我们提出了一个新颖的WSOD框架,其新范式从弱监督到嘈杂的监督(W2N)。通常,通过训练有素的WSOD网络产生的给定的伪基真实性,我们提出了一种两模块迭代训练算法来完善伪标签并逐步监督更好的对象探测器。在定位适应模块中,我们提出正规化损失,以减少原始伪基真实性中判别零件的比例,从而获得更好的伪基真实性,以进行进一步的训练。在半监督的模块中,我们提出了两个任务实例级拆分方法,以选择用于训练半监督检测器的高质量标签。不同基准测试的实验结果验证了W2N的有效性,我们的W2N优于所有现有的纯WSOD方法和转移学习方法。我们的代码可在https://github.com/1170300714/w2n_wsod上公开获得。
translated by 谷歌翻译
Adapting object detectors learned with sufficient supervision to novel classes under low data regimes is charming yet challenging. In few-shot object detection (FSOD), the two-step training paradigm is widely adopted to mitigate the severe sample imbalance, i.e., holistic pre-training on base classes, then partial fine-tuning in a balanced setting with all classes. Since unlabeled instances are suppressed as backgrounds in the base training phase, the learned RPN is prone to produce biased proposals for novel instances, resulting in dramatic performance degradation. Unfortunately, the extreme data scarcity aggravates the proposal distribution bias, hindering the RoI head from evolving toward novel classes. In this paper, we introduce a simple yet effective proposal distribution calibration (PDC) approach to neatly enhance the localization and classification abilities of the RoI head by recycling its localization ability endowed in base training and enriching high-quality positive samples for semantic fine-tuning. Specifically, we sample proposals based on the base proposal statistics to calibrate the distribution bias and impose additional localization and classification losses upon the sampled proposals for fast expanding the base detector to novel classes. Experiments on the commonly used Pascal VOC and MS COCO datasets with explicit state-of-the-art performances justify the efficacy of our PDC for FSOD. Code is available at github.com/Bohao-Lee/PDC.
translated by 谷歌翻译