We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.
translated by 谷歌翻译
由于检测数据集的规模小,当前对象探测器的词汇量受到限制。另一方面,图像分类器的原因是大约更大的词汇表,因为他们的数据集更大,更容易收集。我们提出守则,只需在图像分类数据上培训检测器的分类器,从而扩展了探测器的词汇量到数万个概念。与现有工作不同,拒绝不会根据模型预测将图像标签分配给框,使其更容易实现和兼容一系列检测架构和骨架。我们的结果表明,即使没有箱子注释,否则差异也能产生出色的探测器。它优于开放词汇和长尾检测基准的事先工作。拒绝为所有类和8.3地图提供了2.4地图的增益,用于开放词汇LVIS基准测试中的新型类。在标准的LVIS基准测试中,守护者达到41.7地图所有课程和41.7地图以获得罕见课程。我们首次培训一个探测器,其中包含所有二十一千类的ImageNet数据集,并显示它在没有微调的情况下推广到新数据集。代码可在https://github.com/facebookresearch/dorm提供。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
我们在没有监督的情况下解决了学习对象探测器的问题。与弱监督的对象检测不同,我们不假设图像级类标签。取而代之的是,我们使用音频组件来“教”对象检测器,从视听数据中提取监督信号。尽管此问题与声音源本地化有关,但它更难,因为检测器必须按类型对对象进行分类,列举对象的每个实例,并且即使对象保持沉默,也可以这样做。我们通过首先设计一个自制的框架来解决这个问题,该框架具有一个对比目标,该目标共同学会了分类和本地化对象。然后,在不使用任何监督的情况下,我们只需使用这些自我监督的标签和盒子来训练基于图像的对象检测器。因此,对于对象检测和声音源定位的任务,我们优于先前的无监督和弱监督的检测器。我们还表明,我们可以将该探测器与每个伪级标签的标签保持一致,并展示我们的方法如何学习检测超出仪器(例如飞机和猫)的通用对象。
translated by 谷歌翻译
构建强大的通用对象检测框架需要扩展到更大的标签空间和更大的培训数据集。但是,大规模获取数千个类别的注释是高昂的成本。我们提出了一种新颖的方法,该方法利用了最近的视觉和语言模型中可用的丰富语义来将对象定位和分类在未标记的图像中,从而有效地生成了伪标签以进行对象检测。从通用和类别的区域建议机制开始,我们使用视觉和语言模型将图像的每个区域分类为下游任务所需的任何对象类别。我们在两个特定的任务(开放式摄影检测检测)中演示了生成的伪标签的值,其中模型需要概括为看不见的对象类别以及半监督对象检测,其中可以使用其他未标记的图像来改善模型。我们的经验评估显示了伪标签在这两个任务中的有效性,我们在其中优于竞争基准并实现了开放式摄制对象检测的新颖最新。我们的代码可在https://github.com/xiaofeng94/vl-plm上找到。
translated by 谷歌翻译
对比的自我监督学习在很大程度上缩小了对想象成的预先训练的差距。然而,它的成功高度依赖于想象成的以对象形象,即相同图像的不同增强视图对应于相同的对象。当预先训练在具有许多物体的更复杂的场景图像上,如此重种策划约束会立即不可行。为了克服这一限制,我们介绍了对象级表示学习(ORL),这是一个新的自我监督的学习框架迈向场景图像。我们的主要洞察力是利用图像级自我监督的预培训作为发现对象级语义对应之前的,从而实现了从场景图像中学习的对象级表示。对Coco的广泛实验表明,ORL显着提高了自我监督学习在场景图像上的性能,甚至超过了在几个下游任务上的监督Imagenet预训练。此外,当可用更加解标的场景图像时,ORL提高了下游性能,证明其在野外利用未标记数据的巨大潜力。我们希望我们的方法可以激励未来的研究从场景数据的更多通用无人监督的代表。
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译
现有的开放式视频探测器通常通过利用不同形式的弱监督来扩大其词汇大小。这有助于推断出新的对象。开放式视频检测(OVD)中使用的两种流行形式的弱点,包括预审计的剪辑模型和图像级监督。我们注意到,这两种监督模式均未在检测任务中最佳地对齐:剪辑经过图像文本对培训,并且缺乏对象的精确定位,而图像级监督已与启发式方法一起使用,这些启发式方法无法准确指定本地对象区域。在这项工作中,我们建议通过从剪辑模型中执行以对象为中心的语言嵌入来解决此问题。此外,我们仅使用伪标记的过程来视觉上仅通过图像级监督对象,该过程提供高质量的对象建议,并有助于在训练过程中扩展词汇。我们通过新的重量转移函数在上述两个对象对准策略之间建立桥梁,该策略汇总了它们的免费强度。本质上,提出的模型试图最大程度地减少OVD设置中对象和以图像为中心表示之间的差距。在可可基准上,我们提出的方法在新颖类中实现了40.3 AP50,绝对11.9比以前的最佳性能获得了11.9的增长。对于LVIS,我们超过了5.0 Mask AP的最先进VILD模型,总体上有3.4个。 。代码:https://bit.ly/3byzoqp。
translated by 谷歌翻译
基于深度学习的对象建议方法已在许多计算机视觉管道中取得了重大进展。但是,当前的最新提案网络使用封闭世界的假设,这意味着它们仅接受培训以检测培训课程的实例,同时将每个其他区域视为背景。这种解决方案的样式无法对分发对象进行高度召回,因此可以在可以观察到新颖的对象类别类别的现实开放世界应用程序中使用它。为了更好地检测所有对象,我们提出了一个无分类的自我训练的建议网络(STPN),该提案网络(STPN)利用了一种新型的自我训练优化策略,并结合了动态加权损失功能,以解决诸如类不平衡和伪标签的不确定性之类的挑战。我们的模型不仅旨在在现有的乐观开放世界基准中表现出色,而且在具有重大标签偏见的具有挑战性的操作环境中。为了展示这一点,当培训数据包含(1)标记类中的多样性较小,并且(2)标记实例较少时,我们就设计了两个挑战来测试建议模型的概括。我们的结果表明,STPN在所有任务上都实现了最新的对象概括。
translated by 谷歌翻译
即使在几个例子中,人类能够学会识别新物品。相比之下,培训基于深度学习的对象探测器需要大量的注释数据。为避免需求获取和注释这些大量数据,但很少拍摄的对象检测旨在从目标域中的新类别的少数对象实例中学习。在本调查中,我们在几次拍摄对象检测中概述了本领域的状态。我们根据培训方案和建筑布局分类方法。对于每种类型的方法,我们描述了一般的实现以及提高新型类别性能的概念。在适当的情况下,我们在这些概念上给出短暂的外卖,以突出最好的想法。最终,我们介绍了常用的数据集及其评估协议,并分析了报告的基准结果。因此,我们强调了评估中的共同挑战,并确定了这种新兴对象检测领域中最有前景的电流趋势。
translated by 谷歌翻译
开放世界对象检测(OWOD)是一个具有挑战性的计算机视觉问题,需要检测未知对象并逐渐学习已确定的未知类别。但是,它不能将未知实例区分为多个未知类。在这项工作中,我们提出了一个新颖的OWOD问题,称为未知分类的开放世界对象检测(UC-OWOD)。 UC-OWOD旨在检测未知实例并将其分类为不同的未知类别。此外,我们制定问题并设计一个两阶段的对象检测器来解决UC-OWOD。首先,使用未知的标签意见建议和未知歧视性分类头用于检测已知和未知对象。然后,构建基于相似性的未知分类和未知聚类改进模块,以区分多个未知类别。此外,设计了两个新颖的评估方案,以评估未知类别的检测。丰富的实验和可视化证明了该方法的有效性。代码可在https://github.com/johnwuzh/uc-owod上找到。
translated by 谷歌翻译
自我监督学习的进步带来了强大的一般图像表示学习方法。到目前为止,它主要集中在图像级学习上。反过来,诸如无监督图像细分之类的任务并没有从这种趋势中受益,因为它们需要空间多样性的表示。但是,学习密集的表示具有挑战性,因为在无监督的环境中,尚不清楚如何指导模型学习与各种潜在对象类别相对应的表示形式。在本文中,我们认为对物体部分的自我监督学习是解决此问题的方法。对象部分是可以推广的:它们是独立于对象定义的先验性,但可以分组以形成对象后验。为此,我们利用最近提出的视觉变压器参与对象的能力,并将其与空间密集的聚类任务相结合,以微调空间令牌。我们的方法超过了三个语义分割基准的最新方法,提高了17%-3%,表明我们的表示在各种对象定义下都是用途广泛的。最后,我们将其扩展到完全无监督的分割 - 即使在测试时间也可以完全避免使用标签信息 - 并证明了一种基于社区检测的自动合并发现的对象零件的简单方法可产生可观的收益。
translated by 谷歌翻译
Scaling object taxonomies is one of the important steps toward a robust real-world deployment of recognition systems. We have faced remarkable progress in images since the introduction of the LVIS benchmark. To continue this success in videos, a new video benchmark, TAO, was recently presented. Given the recent encouraging results from both detection and tracking communities, we are interested in marrying those two advances and building a strong large vocabulary video tracker. However, supervisions in LVIS and TAO are inherently sparse or even missing, posing two new challenges for training the large vocabulary trackers. First, no tracking supervisions are in LVIS, which leads to inconsistent learning of detection (with LVIS and TAO) and tracking (only with TAO). Second, the detection supervisions in TAO are partial, which results in catastrophic forgetting of absent LVIS categories during video fine-tuning. To resolve these challenges, we present a simple but effective learning framework that takes full advantage of all available training data to learn detection and tracking while not losing any LVIS categories to recognize. With this new learning scheme, we show that consistent improvements of various large vocabulary trackers are capable, setting strong baseline results on the challenging TAO benchmarks.
translated by 谷歌翻译
弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
近年来,已经开发了几种无监督和自我监督的方法,以从大规模未标记的数据集中学习视觉功能。然而,它们的主要缺点是,如果简单地旋转或相机的视角更改,这些方法几乎无法识别同一对象的视觉特征。为了克服此限制,同时利用有用的监督来源,我们考虑了视频对象轨道。遵循直觉,轨道中的两个补丁应该在学习的特征空间中具有相似的视觉表示形式,我们采用了一种无监督的基于群集的方法,并约束此类表示为同一类别,因为它们可能属于同一对象或对象零件。与先前的工作相比,不同数据集上两个下游任务的实验结果证明了我们在线深度聚类(ODCT)方法的有效性,而视频轨道一致性(ODCT)方法没有利用时间信息。此外,我们表明,与依靠昂贵和精确的轨道注释相比,利用无监督的类不知所措但嘈杂的轨道生成器的产量提高了准确性。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
临床医生在手术室(OR)的细粒度定位是设计新一代或支持系统的关键组成部分。需要基于人像素的分段和身体视觉计算机的计算机视觉模型检测,以更好地了解OR的临床活动和空间布局。这是具有挑战性的,这不仅是因为或图像与传统视觉数据集有很大不同,还因为在隐私问题上很难收集和生成数据和注释。为了解决这些问题,我们首先研究了如何在低分辨率图像上进行姿势估计和实例分割,而下采样因子从1x到12倍进行下采样因子。其次,为了解决域的偏移和缺乏注释,我们提出了一种新型的无监督域适应方法,称为适配器,以使模型从野外标记的源域中适应统计上不同的未标记目标域。我们建议在未标记的目标域图像的不同增强上利用明确的几何约束,以生成准确的伪标签,并使用这些伪标签在自我训练框架中对高分辨率和低分辨率或图像进行训练。此外,我们提出了分离的特征归一化,以处理统计上不同的源和目标域数据。对两个或数据集MVOR+和TUM-或TUM-或测试的详细消融研究的广泛实验结果表明,我们方法对强构建的基线的有效性,尤其是在低分辨率的隐私性或图像上。最后,我们在大规模可可数据集上显示了我们作为半监督学习方法(SSL)方法的普遍性,在这里,我们获得了可比较的结果,而对经过100%标记的监督培训的模型的标签监督只有1%。 。
translated by 谷歌翻译
研究表明,当训练数据缺少注释时,对象检测器的性能下降,即稀疏注释数据。当代方法专注于缺少地面实话注释的代理,无论是伪标签的形式还是通过在训练期间重新称重梯度。在这项工作中,我们重新审视了稀疏注释物体检测的制定。我们观察到稀疏注释的物体检测可以被认为是区域级的半监督对象检测问题。在此洞察力上,我们提出了一种基于区域的半监督算法,它自动识别包含未标记的前景对象的区域。我们的算法然后以不同的方式处理标记和未标记的前景区域,在半监督方法中进行常见做法。为了评估所提出的方法的有效性,我们对普斯卡尔库尔和可可数据集的稀疏注释方法常用的五种分裂进行详尽的实验,并实现最先进的性能。除此之外,我们还表明,我们的方法在标准半监督设置上实现了竞争性能,证明了我们的方法的实力和广泛适用性。
translated by 谷歌翻译
Unsupervised object discovery aims to localize objects in images, while removing the dependence on annotations required by most deep learning-based methods. To address this problem, we propose a fully unsupervised, bottom-up approach, for multiple objects discovery. The proposed approach is a two-stage framework. First, instances of object parts are segmented by using the intra-image similarity between self-supervised local features. The second step merges and filters the object parts to form complete object instances. The latter is performed by two CNN models that capture semantic information on objects from the entire dataset. We demonstrate that the pseudo-labels generated by our method provide a better precision-recall trade-off than existing single and multiple objects discovery methods. In particular, we provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
translated by 谷歌翻译
无监督语义分割的任务旨在将像素聚集到语义上有意义的群体中。具体而言,分配给同一群集的像素应共享高级语义属性,例如其对象或零件类别。本文介绍了MaskDistill:基于三个关键想法的无监督语义细分的新颖框架。首先,我们提倡一种数据驱动的策略,以生成对象掩模作为语义分割事先的像素分组。这种方法省略了手工制作的先验,这些先验通常是为特定场景组成而设计的,并限制了竞争框架的适用性。其次,MaskDistill将对象掩盖簇簇以获取伪地真相,以训练初始对象分割模型。第三,我们利用此模型过滤出低质量的对象掩模。这种策略减轻了我们像素分组中的噪声,并导致了我们用来训练最终分割模型的干净掩模集合。通过组合这些组件,我们可以大大优于以前的作品,用于对Pascal(+11%MIOU)和COCO(+4%Mask AP50)进行无监督的语义分割。有趣的是,与现有方法相反,我们的框架不在低级图像提示上,也不限于以对象为中心的数据集。代码和型号将提供。
translated by 谷歌翻译