我们提出了一种在带有多边形边界的连续平面工作区中,用于标记,磁盘形多机器人路径计划(MPP)的集中式算法。我们的方法会自动将连续问题转换为离散的基于图的变体,称为卵石运动问题,可以有效地解决。为了构建基础卵石图,我们通过内侧轴转换在工作区中的刻有圆圈,并将机器人组织到每个刻有圆圈内的层中。我们表明,我们的分层卵石图可实现无碰撞运动,使所有图形限制的MPP实例都是可行的。然后可以通过将机器人从与图形顶点路由和图形顶点求解的本地导航进行求解的MPP实例。我们在具有高机器人包装密度的多种环境(最高$ 61.6 \%的工作区)上测试了我们的方法。对于通道狭窄的环境,这种密度违反了最先进的MPP计划者做出的完善的假设,而我们的方法的平均成功率为$ 83 \%$。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
多机器人运动计划(MRMP)是在运动动力学约束下针对在环境中作用的多个机器人的非缩进轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于动力学冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径查找(MAPF))具有灵感。具体来说,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力动力学的约束在本地进行治疗。 K-CBS计划使用低级规划师分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。
translated by 谷歌翻译
长期以来,PATH规划一直是机器人技术的主要研究领域之一,PRM和RRT是最有效的计划者之一。尽管通常非常有效,但这些基于抽样的计划者在“狭窄通道”的重要情况下可能会变得昂贵。本文开发了专门为狭窄通道问题制定的路径规划范例。核心是基于计划由椭圆形工会封装的刚体机器人的计划。每个环境特征都使用具有$ \ Mathcal {C}^1 $边界的严格凸面来表示几何(例如,超级方面)。这样做的主要好处是,配置空间障碍物可以以封闭形式明确地进行参数化,从而可以使用先验知识来避免采样不可行的配置。然后,通过表征针对多个椭圆形的紧密体积,可以保证涉及旋转的机器人过渡无碰撞,而无需执行传统的碰撞检测。此外,通过与随机抽样策略结合使用,可以将提出的计划框架扩展到解决较高的维度问题,在该问题中,机器人具有移动的基础和铰接的附属物。基准结果表明,所提出的框架通常优于基于采样的计划者的计算时间和成功率,在找到单身机器人和具有较高维度配置空间的狭窄走廊的路径方面。使用建议的框架进行了物理实验,在人形机器人中进一步证明,该机器人在几个混乱的环境中行走,通道狭窄。
translated by 谷歌翻译
我们提出了一种分层骨骼引导的运动计划算法来指导移动机器人。良好的骨骼绘制了C空间子空间的连接性,该子空间包含显着的自由度,并能够引导计划者快速找到所需的解决方案。但是,有时骨骼并不能密切代表自由的C空间,这通常会误导当前的骨架引导的计划者。分层骨骼指导的计划策略逐渐放松其对工作区骨骼的依赖,因为C空间被采样,从而逐渐返回了一条次优路径,该路径在标准骨架引导的算法中无法保证。与标准骨骼指导计划者和其他懒惰计划策略的实验比较显示了路线图施工时间的显着改善,同时保持混乱环境中多电量问题的路径质量。
translated by 谷歌翻译
运动规划和导航,特别是对于在复杂导航环境中运行的移动机器人,自机器人启动以来一直是一个核心问题。一种解决它的启发式方法是构造基于图形的表示(路径),捕获配置空间的连接。概率路线图是机器人社区的常用方法,为导航移动机器人路径规划构建路径。在该研究中,提出了通过在障碍物的存在下从PRM获得路径之后的移动机器人路径规划的路径平坦化。所提出的方法以两个步骤运行;第一个在障碍物存在环境中生成初始状态之间的最短路径,其中通过连接中间节点来使用PRM来构造直线路径。第二步是通过节点存在引起的每个角落平滑。使用弧形圆角刮削角落确保移动机器人的光滑转弯。用不同的PRM功能模拟和测试了建议的方法。实验结果表明,构造的路径不仅仅是提供平稳的转动;在避免障碍时,它也更短且更快地完成机器人。
translated by 谷歌翻译
本文介绍了经典懒惰的概率路线图算法(Lazy PRM)的修订,该算法是由配对PRM和一种新颖的分支和切割(BC)算法产生的。切割是动态生成的约束,这些约束在PRM选择的几何图上施加的最低成本路径。削减消除无法映射到满足适当定义运动学约束的平滑计划中的路径。我们通过在最低成本路径中将花键拟合到顶点来生成候选平滑计划。使用最近提出的算法对计划进行了验证,该算法将它们映射到有限的痕迹中,而无需选择固定的离散步骤。痕量元素准确地描述了计划交叉约束边界何时模拟算术精度。我们使用我们最近提出的谷仓基准的方法评估了几个计划者,我们报告了方法可扩展性的证据。
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
本文的主要贡献是证明Omni方向绑扎机器人工作区的凸度(即,所有绑带长度可加入的机器人配置的集合)以及一组距离最佳的距离束缚的束缚的束缚路径计划算法该算法该算法该算法利用工作区凸度。该工作空间在拓扑上被证明是一个简单连接的子集,并且在几何上是所有配置集的凸子集。作为一个直接结果,两种配置之间的绑扎长度加入的最佳路径已被证明是通过通过串联的给定配置的串联串联指定的同置的无碰撞的本地最短路径,可以简单地通过表演来构建在2D环境中的无束缚路径缩短过程,而不是预定的工作空间中的路径搜索过程。凸度是束缚的机器人运动学的固有特性,因此对所有高级距离距离最佳的系绳路径计划任务产生了普遍影响:最耗时的工作空间预估算(WP)过程被替换为目标配置前的过程。计算过程(GCP)过程和同拷贝感知路径搜索过程被不受束缚的路径缩短过程取代。自然提出了由工作空间凸度的激励,有效解决以下问题的有效算法:(a)最佳的束缚重新配置(TR)计划问题是通过本地不受束缚的路径缩短(UPS)过程解决的,(b)经典的最佳绑扎路径(b) (TP)计划问题(从启动配置到未分配目标系绳状态的目标位置)通过GCP进程和$ N $ UPS流程解决,其中$ n $是绑带长度 - 加热配置的数量访问目标位置,(c)访问一系列多个目标位置的最佳束缚运动,称为
translated by 谷歌翻译
在多代理路径查找(MAPF)问题中,一组在图表上移动的代理必须达到其自身各自的目的地,而无需间间冲突。在实用的MAPF应用中,如自动仓库导航,偶尔有数百个或更多代理商,MAPF必须在终身基础上迭代地解决。这种情景排除了离线计算密集型最佳方法的简单调整;因此,可扩展的子最优算法用于此类设置。理想的可扩展算法适用于可预测计算时间的迭代方案和输出合理的解决方案。对于上述目的,在本研究中,提出了一种具有回溯(PIBT)的优先级继承的新型算法以迭代地解决MAPF。 PIBT依赖于适应性优先级方案,专注于多个代理的相邻运动;因此它可以应用于若干域。我们证明,无论其数量如何,当环境是图形时,所有代理都保证在有限的时间内达到目的地,使得所有相邻节点属于一个简单的周期(例如,双绞线)。实验结果涵盖了各种场景,包括真正的机器人演示,揭示了所提出的方法的好处。即使用数百种代理商,PIBT也会立即产生可接受的解决方案,可以解决其他事实上MAPF方法的大型情况。此外,PIBT在运行时和解决方案质量的自动化仓库中的传送包中的迭代方案上占据了现有方法。
translated by 谷歌翻译
尽管空间限制对代理的性能产生了明显的影响,但多代理导航算法设计的传统方法将环境视为固定的限制。然而,手动设计改进的环境布局和结构效率低下且可能昂贵。本文的目的是将环境视为系统级优化问题中的决策变量,在该问题中,代理性能和环境成本都可以考虑到。我们首先提出一个新颖的环境优化问题。我们通过正式证明在哪些条件下显示环境可以改变的同时保证完整性(即所有代理达到其导航目标)。我们的解决方案利用了一种无模型的增强学习方法。为了适应广泛的实施方案,我们包括在线和离线优化,以及离散和连续的环境表示。数值结果证实了我们的理论发现并验证了我们的方法。
translated by 谷歌翻译
共享工作空间中无线轨迹的生成对于大多数多机器人应用程序至关重要。但是,许多基于模型预测控制(MPC)的广泛使用的方法缺乏基础优化的可行性的理论保证。此外,当以分布式的方式应用无中央协调员时,僵局通常会无限期地互相阻挡。尽管存在诸如引入随机扰动之类的启发式方法,但没有进行深入的分析来验证这些措施。为此,我们提出了一种系统的方法,称为Infinite-Horizo​​n模型预测性控制,并通过死锁解决。 MPC用警告范围对拟议的修改后的Voronoi进行了配方,作为凸优化。基于此公式,对僵局的状况进行了正式分析,并证明与力平衡相似。提出了一个检测分辨率方案,该方案可以在甚至在发生之前有效地在网上检测到僵局,并且一旦检测到,便利用自适应分辨率方案来解决僵局,并在绩效上进行理论保证。此外,所提出的计划算法可确保在输入和模型约束下每个时间步骤的基础优化的递归可行性,对于所有机器人都是并发的,并且只需要本地通信。全面的模拟和实验研究是通过大规模多机器人系统进行的。与其他最先进的方法相比,尤其是在拥挤和高速场景中,成功率的显着提高了成功率。
translated by 谷歌翻译
Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.
translated by 谷歌翻译
为了在标记的设置下实现高效,大规模的无人驾驶汽车(UAV)的协调,在这项工作中,我们开发了第一种多项式时间算法,用于在三维空间中重新配置许多移动物体,并提供可证明的$ 1.x $在高机器人密度下,渐近制造pan最佳保证。更准确地说,在$ m_1 \ times m_2 \ times m_3 $ grid,$ m_1 \ ge m_2 \ ge m_3 $,我们的方法计算解决方案最多可将$ \ frac {m_1m_2m_3} {3} {3} {3} $唯一的随机机器人分布式开始和目标配置在$ M_1 +2M_2 +2M_3 +O(M_1)$的MakePAN中,概率很高。因为此类实例的makepan下限为$ m_1+m_2+m_3 -o(m_1)$,也有很高的可能性,如$ m_1 \ to \ infty $,$ \ frac {m_1+2m_2+2m_2+2m_3} {m_1+m_1+m_1+m_2+m_2 +M_3} $最佳保证。 $ \ frac {m_1+2m_2+2m_3} {m_1+m_2+m_3} \ in(1,\ frac {5} {3}] $,产生$ 1.x $ optimality。相比 - 机动体路径计划是最佳解决的NP。在数值评估中,我们的方法很容易缩放以支持超过100,000美元的3D机器人的运动计划,同时达到$ 1.x $ optimality。我们证明了我们的方法在协调方面的应用许多四肢中的二重奏和硬件实验。
translated by 谷歌翻译
当考虑$ N $标记的机器人的运动计划时,我们需要通过一系列平行,连续的,无碰撞的机器人运动来重新布置给定的启动配置为所需的目标配置。目的是在最短的时间内达到新配置;一个重要的约束是始终保持群体连接。以前已经考虑过这种类型的问题,最近值得注意的结果可实现不一定连接的重新配置:如果将起始配置映射到目标配置,则需要最大的曼哈顿距离$ D $,则总体时间表的总持续时间可以是限制为$ \ Mathcal {O}(d)$,这是最佳选择的恒定因素。但是,只有在允许断开连接的重新配置或用于缩放的配置(通过将给定对象的所有维度通过相同的乘法因子增加到相同的乘法因子增加)时,才能实现恒定拉伸。我们通过(1)建立$ \ omega(\ sqrt {n})$的下限来解决这些主要的开放问题可以实现重新配置。此外,我们表明(3)决定是否可以实现2个制造物,而可以检查多项式时间是否可以实现1个制造pan。
translated by 谷歌翻译
自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
这项工作提出了一个新的路径分类标准,以几何和拓扑区分路径与工作空间区分路径,该路径通过细胞分解分开,生成内侧轴状的骨骼结构。我们使用此信息以及机器人的拓扑来绑定和对配置空间中的不同路径进行分类。我们表明,所提出的方法找到的路径类等于和比路径同遵循的路径类更细。拟议的路径类易于计算,比较,并且可用于各种计划目的。该分类在机器人的拓扑结构和工作空间的几何形状上大大建立,从而导致了对配置空间的替代基于纤维束的描述。我们介绍了一个计划框架,以使用建议的路径分类方法和所得路径类克服障碍和狭窄的段落。
translated by 谷歌翻译
我们提出并通过实验证明了双层机器人的反应性规划系统,在未开发,具有挑战性的地形上。该系统由低频规划线(5Hz)组成,用于找到渐近最佳路径和高频无功螺纹(300Hz)以适应机器人偏差。规划线程包括:多层本地地图,以计算地形上机器人的拖拉性;任何时间的全向控制Lyapunov函数(CLF),用于快速探索随机树星(RRT *),它会生成一个矢量字段,用于指定节点之间的运动;当最终目标位于当前地图之外时,子目标查找器;和一个有限状态的机器来处理高级任务决策。该系统还包括反应线,以避免在执行路径后用传统的RRT *算法出现的非平滑运动。具有机器人偏差的反应线应对,同时通过矢量字段(由闭环反馈策略定义)消除非平滑运动,其为机器人的步态控制器提供实时控制命令作为瞬时机器人姿势的函数。该系统在Cassie Blue的模拟和实验中进行了各种具有挑战性的户外地形和杂乱的室内场景,这是一个具有20个自由度的双模型机器人。所有实现在C ++中编码了机器人操作系统(ROS),可在https://github.com/umich-bipedlab/clf_reactive_planning_system中获得。
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
路径计划是设计机器人行为的关键算法方法。基于抽样的方法,例如快速探索随机树(RRT)或概率路线图,是针对路径计划问题的突出算法解决方案。尽管其指数收敛速率,RRT只能找到次优路径。另一方面,$ \ textrm {rrt}^*$是RRT广泛​​使用的扩展名,保证了寻找最佳路径的概率完整性,但在复杂环境中缓慢收敛而在实践中遭受痛苦。此外,现实世界中的机器人环境通常是可观察到的,或者描述的动力学不好,施放了$ \ textrm {rrt}^*$在复杂任务中的应用。本文研究了用于机器人路径计划的流行蒙特卡洛树搜索(MCTS)算法的新型算法公式。值得注意的是,我们通过分析和证明其指数的收敛速率(MCPP)在完全可观察到的马尔可夫决策过程(MDP)的一部分中,并证明其指数收敛速率,而另一部分则是其概率的完整性假设有限的距离可观察性(证明草图),在部分可观察的MDP(POMDP)中找到可行的路径。我们的算法贡献使我们能够采用最近提出的MCT的变体,并具有不同的勘探策略来进行机器人路径计划。我们在模拟的2D和3D环境中进行了7度自由度(DOF)操纵器以及现实世界机器人路径计划任务中的实验评估,证明了MCPP在POMDP任务中的优势。
translated by 谷歌翻译