自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
我们提出并通过实验证明了双层机器人的反应性规划系统,在未开发,具有挑战性的地形上。该系统由低频规划线(5Hz)组成,用于找到渐近最佳路径和高频无功螺纹(300Hz)以适应机器人偏差。规划线程包括:多层本地地图,以计算地形上机器人的拖拉性;任何时间的全向控制Lyapunov函数(CLF),用于快速探索随机树星(RRT *),它会生成一个矢量字段,用于指定节点之间的运动;当最终目标位于当前地图之外时,子目标查找器;和一个有限状态的机器来处理高级任务决策。该系统还包括反应线,以避免在执行路径后用传统的RRT *算法出现的非平滑运动。具有机器人偏差的反应线应对,同时通过矢量字段(由闭环反馈策略定义)消除非平滑运动,其为机器人的步态控制器提供实时控制命令作为瞬时机器人姿势的函数。该系统在Cassie Blue的模拟和实验中进行了各种具有挑战性的户外地形和杂乱的室内场景,这是一个具有20个自由度的双模型机器人。所有实现在C ++中编码了机器人操作系统(ROS),可在https://github.com/umich-bipedlab/clf_reactive_planning_system中获得。
translated by 谷歌翻译
为了实现成功的实地自主权,移动机器人需要自由适应环境的变化。视觉导航系统(如视觉教学和重复(VT&R)通常会假设参考轨迹周围的空间是自由的,但如果环境受阻,则路径跟踪可能会失败,或者机器人可以与先前看不见的障碍物碰撞。在这项工作中,我们为VT&R系统提供了一个局部反应控制器,允许机器人尽管对环境进行物理变化,但是尽管环境变化。我们的控制器使用本地高程映射来计算矢量表示,并输出10 Hz导航的Twist命令。它们组合在Riemannian运动策略(RMP)控制器中,该控制器需要<2 ms以在CPU上运行。我们将我们的控制器与VT&R系统集成在内的ANYMAL COMOT,并在室内杂乱的空间和大规模地下矿井中进行了测试。我们表明,当发生诸如靠近墙壁,交叉门口或穿越狭窄的走廊时,当发生视觉跟踪时,我们的本地反应控制器保持机器人安全。视频:https://youtu.be/g_awnec5awu.
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译
在机器人研究中,在不平坦的地形中安全导航是一个重要的问题。在本文中,我们提出了一个2.5D导航系统,该系统包括高程图构建,路径规划和本地路径,随后避免了障碍。对于本地路径,我们使用模型预测路径积分(MPPI)控制方法。我们为MPPI提出了新的成本功能,以使其适应高程图和通过不平衡运动。我们在多个合成测试和具有不同类型的障碍物和粗糙表面的模拟环境中评估系统。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
多机器人运动计划(MRMP)是在运动动力学约束下针对在环境中作用的多个机器人的非缩进轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于动力学冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径查找(MAPF))具有灵感。具体来说,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力动力学的约束在本地进行治疗。 K-CBS计划使用低级规划师分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。
translated by 谷歌翻译
This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles -- a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92%, when 50 simultaneously moving obstacles populate the environment showing better performance than the state-of-the-art competitors.
translated by 谷歌翻译
近年来,无人驾驶汽车(UAV)用于众多检查和视频捕获任务。但是,在障碍附近手动控制无人机是具有挑战性的,并且构成了高风险。即使对于自动飞行,全球导航计划也可能太慢,无法应对新感知的障碍。诸如风之类的干扰可能会导致与计划中的轨迹偏离。在这项工作中,我们提出了一种快速的预测障碍方法,该方法不取决于更高级别的本地化或映射,并保持无人机的动态飞行功能。它直接在LIDAR范围内实时运行,并通过计算范围图像内的角电位字段来调整当前飞行方向。随后根据轨迹预测和接触时间估计来确定速度幅度。使用硬件式模拟评估我们的方法。它可以使无人机保持安全距离,同时允许比以前直接在传感器数据上运行的反应性障碍物方法更高的飞行速度。
translated by 谷歌翻译
By utilizing only depth information, the paper introduces a novel but efficient local planning approach that enhances not only computational efficiency but also planning performances for memoryless local planners. The sampling is first proposed to be based on the depth data which can identify and eliminate a specific type of in-collision trajectories in the sampled motion primitive library. More specifically, all the obscured primitives' endpoints are found through querying the depth values and excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. On the other hand, we furthermore propose a steering mechanism also based on the depth information to effectively prevent an autonomous vehicle from getting stuck when facing a large convex obstacle, providing a higher level of autonomy for a planning system. Our steering technique is theoretically proved to be complete in scenarios of convex obstacles. To evaluate effectiveness of the proposed DEpth based both Sampling and Steering (DESS) methods, we implemented them in the synthetic environments where a quadrotor was simulated flying through a cluttered region with multiple size-different obstacles. The obtained results demonstrate that the proposed approach can considerably decrease computing time in local planners, where more trajectories can be evaluated while the best path with much lower cost can be found. More importantly, the success rates calculated by the fact that the robot successfully navigated to the destinations in different testing scenarios are always higher than 99.6% on average.
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译