为了在标记的设置下实现高效,大规模的无人驾驶汽车(UAV)的协调,在这项工作中,我们开发了第一种多项式时间算法,用于在三维空间中重新配置许多移动物体,并提供可证明的$ 1.x $在高机器人密度下,渐近制造pan最佳保证。更准确地说,在$ m_1 \ times m_2 \ times m_3 $ grid,$ m_1 \ ge m_2 \ ge m_3 $,我们的方法计算解决方案最多可将$ \ frac {m_1m_2m_3} {3} {3} {3} $唯一的随机机器人分布式开始和目标配置在$ M_1 +2M_2 +2M_3 +O(M_1)$的MakePAN中,概率很高。因为此类实例的makepan下限为$ m_1+m_2+m_3 -o(m_1)$,也有很高的可能性,如$ m_1 \ to \ infty $,$ \ frac {m_1+2m_2+2m_2+2m_3} {m_1+m_1+m_1+m_2+m_2 +M_3} $最佳保证。 $ \ frac {m_1+2m_2+2m_3} {m_1+m_2+m_3} \ in(1,\ frac {5} {3}] $,产生$ 1.x $ optimality。相比 - 机动体路径计划是最佳解决的NP。在数值评估中,我们的方法很容易缩放以支持超过100,000美元的3D机器人的运动计划,同时达到$ 1.x $ optimality。我们证明了我们的方法在协调方面的应用许多四肢中的二重奏和硬件实验。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
在多代理路径查找(MAPF)问题中,一组在图表上移动的代理必须达到其自身各自的目的地,而无需间间冲突。在实用的MAPF应用中,如自动仓库导航,偶尔有数百个或更多代理商,MAPF必须在终身基础上迭代地解决。这种情景排除了离线计算密集型最佳方法的简单调整;因此,可扩展的子最优算法用于此类设置。理想的可扩展算法适用于可预测计算时间的迭代方案和输出合理的解决方案。对于上述目的,在本研究中,提出了一种具有回溯(PIBT)的优先级继承的新型算法以迭代地解决MAPF。 PIBT依赖于适应性优先级方案,专注于多个代理的相邻运动;因此它可以应用于若干域。我们证明,无论其数量如何,当环境是图形时,所有代理都保证在有限的时间内达到目的地,使得所有相邻节点属于一个简单的周期(例如,双绞线)。实验结果涵盖了各种场景,包括真正的机器人演示,揭示了所提出的方法的好处。即使用数百种代理商,PIBT也会立即产生可接受的解决方案,可以解决其他事实上MAPF方法的大型情况。此外,PIBT在运行时和解决方案质量的自动化仓库中的传送包中的迭代方案上占据了现有方法。
translated by 谷歌翻译
当考虑$ N $标记的机器人的运动计划时,我们需要通过一系列平行,连续的,无碰撞的机器人运动来重新布置给定的启动配置为所需的目标配置。目的是在最短的时间内达到新配置;一个重要的约束是始终保持群体连接。以前已经考虑过这种类型的问题,最近值得注意的结果可实现不一定连接的重新配置:如果将起始配置映射到目标配置,则需要最大的曼哈顿距离$ D $,则总体时间表的总持续时间可以是限制为$ \ Mathcal {O}(d)$,这是最佳选择的恒定因素。但是,只有在允许断开连接的重新配置或用于缩放的配置(通过将给定对象的所有维度通过相同的乘法因子增加到相同的乘法因子增加)时,才能实现恒定拉伸。我们通过(1)建立$ \ omega(\ sqrt {n})$的下限来解决这些主要的开放问题可以实现重新配置。此外,我们表明(3)决定是否可以实现2个制造物,而可以检查多项式时间是否可以实现1个制造pan。
translated by 谷歌翻译
线覆盖范围的问题是找到有效的路由,以通过一个或多个资源约束的机器人覆盖线性特征。线性具有模型环境,例如道路网络,电力线以及石油和天然气管道。我们为机器人定义了两种旅行模式:维修和陷入困境。机器人服务功能如果它执行特定于任务的操作,例如拍摄图像,则它可以遍历该功能;否则,它是无人机的。穿越环境会产生成本(例如旅行时间)和对资源的需求(例如电池寿命)。维修和无人机的成本和需求功能可能具有不同的成本和需求功能,我们进一步允许它们取决于方向。我们将环境建模为图形,并提供整数线性程序。由于问题是NP-HARD,因此我们开发了一种快速有效的启发式算法,即合并 - 默认混合物(MEM)。该算法的建设性属性使得为大图求解了多depot版本。我们进一步扩展了MEM算法,以处理转弯成本和非语言限制。我们在50个道路网络的数据集上对算法进行基准测试,并在道路网络上使用空中机器人进行了实验中的算法。
translated by 谷歌翻译
本文使用基于采样的方法RRT*研究,以在复杂的环境中重新配置一组连接的瓷砖,在这些环境中可能存在多个障碍。由于目标应用程序是自动构建离散的自动构建,因此使用移动机器人进行了蜂窝结构,因此有一些限制可以确定可以拾取哪些图块以及在重新配置期间可以将其放下的块。我们将我们的方法与两种算法作为全球和本地计划者进行了比较,并表明我们能够在具有不同程度的障碍空间的环境中使用合理数量的样本找到更有效的构建序列。
translated by 谷歌翻译
我们提出了一种在带有多边形边界的连续平面工作区中,用于标记,磁盘形多机器人路径计划(MPP)的集中式算法。我们的方法会自动将连续问题转换为离散的基于图的变体,称为卵石运动问题,可以有效地解决。为了构建基础卵石图,我们通过内侧轴转换在工作区中的刻有圆圈,并将机器人组织到每个刻有圆圈内的层中。我们表明,我们的分层卵石图可实现无碰撞运动,使所有图形限制的MPP实例都是可行的。然后可以通过将机器人从与图形顶点路由和图形顶点求解的本地导航进行求解的MPP实例。我们在具有高机器人包装密度的多种环境(最高$ 61.6 \%的工作区)上测试了我们的方法。对于通道狭窄的环境,这种密度违反了最先进的MPP计划者做出的完善的假设,而我们的方法的平均成功率为$ 83 \%$。
translated by 谷歌翻译
线覆盖范围是为环境中的一组一维功能提供服务的任务。这对于检查线性基础设施(例如道路网络,电力线以及石油和天然气管道)很重要。本文通过在图上将其建模为优化问题,解决了空中和地面机器人的单个机器人线覆盖率问题。该问题属于广泛的ARC路由问题,与不对称的农村邮政问题(RPP)密切相关。本文提供了一个整数线性编程公式,并提供了正确的证明。使用最低成本流问题,我们开发近似算法,并保证解决方案质量。这些保证还改善了不对称RPP的现有结果。主要算法将问题分为三种情况,以所需图的结构,即需要维修的特征诱导的图。我们在世界上50个人口最多的城市的道路网络上评估了我们的算法。该算法以改进的启发式增强,在3s内运行,并生成最佳最佳10%以内的解决方案。我们在UNC Charlotte校园路网络上通过商业无人机在实验中展示了我们的算法。
translated by 谷歌翻译
区域覆盖范围问题是使用安装在机器人(例如无人驾驶汽车(UAV)(UAV)和无人接地车辆(UGV)等机器人上的传感器有效维修给定的二维表面的任务。我们提出了一种新颖的配方,用于生成多个容量受限机器人的覆盖路线,可以根据电池寿命或飞行时间指定容量。遍历环境对具有容量限制的机器人资源产生了需求。我们方法的主要方面是将区域覆盖问题转换为线覆盖范围问题(即线性特征的覆盖范围),然后生成途径,以最大程度地减少旅行的总成本,同时尊重容量约束。我们定义了两种旅行模式:(1)维修和(2)无人机,这与机器人是否执行特定于任务的操作相对应。我们的配方允许对两种模式的单独和不对称的旅行成本和需求。此外,从细胞分解计算出来的细胞,旨在最小化转弯的数量,不需要单调多边形。我们为细胞分解和生成服务轨道开发了新的程序,这些过程可以处理有或没有孔的非符号酮多边形。我们在具有25个室内环境的地面机器人数据集和一个具有300个室外环境的空中机器人数据集上建立了算法的功效。该算法生成的解决方案的成本比最新方法平均低10%。我们还证明了我们在无人机实验中的算法。
translated by 谷歌翻译
多机器人系统通过整体对应物提供增强的能力,但它们以增加的协调复杂化。为了减少复杂性并使文献中的多机器人运动规划(MRMP)方法采用牺牲最优性或动态可行性的解耦方法采用解耦方法。在本文中,我们提出了一种凸起方法,即“抛物线弛豫”,为所有机器人的耦合关节空间中MRMP产生最佳和动态可行的轨迹。我们利用建议的放松来解决问题复杂性,并在极端集群环境中规划超过一百个机器人的计算途径。我们采取了一种多级优化方法,包括i)数学地配制MRMP作为非凸优化,II)将问题提升到更高的尺寸空间,III)通过所提出的计算有效的抛物线松弛和IV凸出问题。使用迭代搜索惩罚,以确保对原始问题的可行性和近最佳解决方案的可行性和恢复。我们的数值实验表明,所提出的方法能够在比最先进的成功率上具有更高成功率的挑战运动规划问题的最佳和动态可行的轨迹,但在高度密集的环境中,在一百个机器人中仍然在计算上仍然在计算上。 。
translated by 谷歌翻译
我们研究了协调两个机器人臂以解决非单调式桌面多对象重排任务的问题。在非单调重排任务中,存在复杂的对象对象依赖项,需要多次移动某些对象才能求解实例。在大型工作空间中使用两个武器的工作时,必须在机器人之间交出一些物体,这使计划过程更加复杂。对于具有挑战性的双臂桌面重排问题,我们开发了有效的任务计划算法,以安排可以在两个臂之间正确分布的挑选n位序列。我们表明,即使不使用复杂的运动计划者,我们的方法也可以与贪婪的方法和单机器人计划的幼稚平行化相比,可以节省大量时间。
translated by 谷歌翻译
本文提出了一个基于抽样的运动计划者,该计划将RRT*(迅速探索随机树星)集成到预计运动原始图的数据库中,以减轻其计算负载,并允许在动态或部分已知的环境中进行运动计划。该数据库是通过在某些网格空间中考虑一组初始状态和最终状态对来构建的,并确定每个对与系统动力学和约束兼容的最佳轨迹,同时最小化成本。通过在网格状态空间中提取样品并在数据库中选择将其连接到现有节点的数据库中的最佳无障碍运动原始性,将节点逐渐添加到RRT*算法中可行轨迹树中的节点。如果可以通过无障碍的运动原始的原始较低的成本从新的采样状态达到一些节点,则树将重新接线。因此,运动计划的计算更密集的部分被移至数据库构建的初步离线阶段(以网格造成的某些性能退化为代价。可以对网格分辨率进行调整,以便在数据库的最优性和大小之间妥协。由于网格分辨率为零,并且采样状态的数量增长到无穷大,因此规划器被证明是渐近的最佳选择。
translated by 谷歌翻译
我们研究了合作航空航天车辆路线应用程序的资源分配问题,其中多个无人驾驶汽车(UAV)电池容量有限和多个无人接地车辆(UGV),这也可以充当移动充电站,需要共同实现诸如持续监视一组要点之类的任务。由于无人机的电池能力有限,他们有时必须偏离任务才能与UGV进行集合并得到充电。每个UGV一次可以一次提供有限数量的无人机。与确定性多机器人计划的先前工作相反,我们考虑了无人机能源消耗的随机性所带来的挑战。我们有兴趣找到无人机的最佳充电时间表,从而最大程度地减少了旅行成本,并且在计划范围内没有任何无人机在计划范围内取消收费的可能性大于用户定义的公差。我们将此问题({风险意识召集集合问题(RRRP))}作为整数线性程序(ILP),其中匹配的约束捕获资源可用性约束,而背包约束捕获了成功概率约束。我们提出了一种求解RRRP的双晶格近似算法。在一个持续监测任务的背景下,我们证明了我们的制定和算法的有效性。
translated by 谷歌翻译
Coverage path planning is a major application for mobile robots, which requires robots to move along a planned path to cover the entire map. For large-scale tasks, coverage path planning benefits greatly from multiple robots. In this paper, we describe Turn-minimizing Multirobot Spanning Tree Coverage Star(TMSTC*), an improved multirobot coverage path planning (mCPP) algorithm based on the MSTC*. Our algorithm partitions the map into minimum bricks as tree's branches and thereby transforms the problem into finding the maximum independent set of bipartite graph. We then connect bricks with greedy strategy to form a tree, aiming to reduce the number of turns of corresponding circumnavigating coverage path. Our experimental results show that our approach enables multiple robots to make fewer turns and thus complete terrain coverage tasks faster than other popular algorithms.
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
本文的主要贡献是证明Omni方向绑扎机器人工作区的凸度(即,所有绑带长度可加入的机器人配置的集合)以及一组距离最佳的距离束缚的束缚的束缚路径计划算法该算法该算法该算法利用工作区凸度。该工作空间在拓扑上被证明是一个简单连接的子集,并且在几何上是所有配置集的凸子集。作为一个直接结果,两种配置之间的绑扎长度加入的最佳路径已被证明是通过通过串联的给定配置的串联串联指定的同置的无碰撞的本地最短路径,可以简单地通过表演来构建在2D环境中的无束缚路径缩短过程,而不是预定的工作空间中的路径搜索过程。凸度是束缚的机器人运动学的固有特性,因此对所有高级距离距离最佳的系绳路径计划任务产生了普遍影响:最耗时的工作空间预估算(WP)过程被替换为目标配置前的过程。计算过程(GCP)过程和同拷贝感知路径搜索过程被不受束缚的路径缩短过程取代。自然提出了由工作空间凸度的激励,有效解决以下问题的有效算法:(a)最佳的束缚重新配置(TR)计划问题是通过本地不受束缚的路径缩短(UPS)过程解决的,(b)经典的最佳绑扎路径(b) (TP)计划问题(从启动配置到未分配目标系绳状态的目标位置)通过GCP进程和$ N $ UPS流程解决,其中$ n $是绑带长度 - 加热配置的数量访问目标位置,(c)访问一系列多个目标位置的最佳束缚运动,称为
translated by 谷歌翻译
审查多个机器人的无碰撞路径的目的对于现实世界多机器人系统很重要,并且已被研究为在图形上的优化问题,称为多代理路径查找(MAPF)。这篇评论调查了不同类别的经典和最先进的MAPF算法,并进行了不同的研究尝试,以应对将MAPF技术推广到现实世界情景的挑战。最新的发现解决MAPF问题是在计算上具有挑战性的。最近的进步导致了MAPF算法,该算法可以在运行时计算数百个机器人和数千个导航任务的无碰撞路径。 MAPF的许多变体已被正式化,以使MAPF技术适应不同的现实需求,例如机器人运动学的考虑,实时系统的在线优化以及任务分配和路径计划的集成。用于MAPF问题的摘要算法技术已经解决了多个多机器人应用程序的重要方面,包括自动仓库履行和分类,自动化火车调度以及非独立机器人和四轮驱动器的导航。这展示了它们在大型多机器人系统的现实应用中的潜力。
translated by 谷歌翻译
In this paper, we consider the multi-robot path execution problem where a group of robots move on predefined paths from their initial to target positions while avoiding collisions and deadlocks in the face of asynchrony. We first show that this problem can be reformulated as a distributed resource allocation problem and, in particular, as an instance of the well-known Drinking Philosophers Problem (DrPP). By careful construction of the drinking sessions capturing shared resources, we show that any existing solutions to DrPP can be used to design robot control policies that are collectively collision and deadlock-free. We then propose modifications to an existing DrPP algorithm to allow more concurrent behavior, and provide conditions under which our method is deadlock-free. Our method does not require robots to know or to estimate the speed profiles of other robots and results in distributed control policies. We demonstrate the efficacy of our method on simulation examples, which show competitive performance against the state-of-the-art.
translated by 谷歌翻译
多路径定向问题询问机器人团队的路径最大化收集的总奖励,同时满足路径长度上的预算约束。这个问题模拟了许多多机器人路由任务,例如探索未知的环境和环境监控信息。在本文中,我们专注于如何使机器人团队在对抗环境中运行时对故障的强大。我们介绍了强大的多路径定向事问题(RMOP),在那里我们寻求最糟糕的案例保证,反对能够在大多数$ \ Alpha $机器人处攻击的对手。我们考虑两个问题的两个版本:RMOP离线和RMOP在线。在离线版本中,当机器人执行其计划时,没有通信或重新扫描,我们的主要贡献是一种具有界限近似保证的一般近似方案,其取决于$ \ alpha $和单个机器人导向的近似因子。特别是,我们表明该算法在成本函数是模块化时产生(i)恒因子近似; (ii)在成本函数是子模具时,$ \ log $因子近似; (iii)当成本函数是子模块时的恒因子近似,但是允许机器人通过有界金额超过其路径预算。在在线版本中,RMOP被建模为双人顺序游戏,并基于蒙特卡罗树搜索(MCT),以后退地平线方式自适应解决。除了理论分析之外,我们还对海洋监测和隧道信息收集应用进行仿真研究,以证明我们的方法的功效。
translated by 谷歌翻译
This paper presents a new method for integrated time-optimal routing and trajectory optimization of multirotor unmanned aerial vehicles (UAVs). Our approach extends the well-known Traveling Salesman Problem by accounting for the limited maneuverability of the UAVs due to their kinematic properties. To this end, we allow each waypoint to be traversed with a discretized velocity as well as a discretized flight direction and compute time-optimal trajectories to determine the travel time costs for each edge. We refer to this novel optimization problem as the Trajectory-based Traveling Salesman Problem (TBTSP). The results show that compared to a state-of-the-art approach for Traveling Salesman Problems with kinematic restrictions of UAVs, we can decrease mission duration by up to 15\%.
translated by 谷歌翻译