这项工作提出了一个新的路径分类标准,以几何和拓扑区分路径与工作空间区分路径,该路径通过细胞分解分开,生成内侧轴状的骨骼结构。我们使用此信息以及机器人的拓扑来绑定和对配置空间中的不同路径进行分类。我们表明,所提出的方法找到的路径类等于和比路径同遵循的路径类更细。拟议的路径类易于计算,比较,并且可用于各种计划目的。该分类在机器人的拓扑结构和工作空间的几何形状上大大建立,从而导致了对配置空间的替代基于纤维束的描述。我们介绍了一个计划框架,以使用建议的路径分类方法和所得路径类克服障碍和狭窄的段落。
translated by 谷歌翻译
在这项工作中,我们提出了一个基于工作空间的计划框架,尽管它使用冗余工作空间密钥点代表机器人状态,但可以利用可解释的几何信息,从而为复杂的机器人提供高质量的无碰撞路径。使用工作空间几何形状,我们首先找到每个钥匙点的无碰撞线性路径,以便在每个段的端点上,在密钥点之间满足距离约束。使用这些零件线性路径作为初始条件,我们可以执行优化步骤,以快速找到满足各种约束并将所有段组合在一起以获得有效路径的路径。我们表明,这些调整后的路径不太可能造成碰撞,并且建议的方法很快,可以产生良好的效果。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
当考虑$ N $标记的机器人的运动计划时,我们需要通过一系列平行,连续的,无碰撞的机器人运动来重新布置给定的启动配置为所需的目标配置。目的是在最短的时间内达到新配置;一个重要的约束是始终保持群体连接。以前已经考虑过这种类型的问题,最近值得注意的结果可实现不一定连接的重新配置:如果将起始配置映射到目标配置,则需要最大的曼哈顿距离$ D $,则总体时间表的总持续时间可以是限制为$ \ Mathcal {O}(d)$,这是最佳选择的恒定因素。但是,只有在允许断开连接的重新配置或用于缩放的配置(通过将给定对象的所有维度通过相同的乘法因子增加到相同的乘法因子增加)时,才能实现恒定拉伸。我们通过(1)建立$ \ omega(\ sqrt {n})$的下限来解决这些主要的开放问题可以实现重新配置。此外,我们表明(3)决定是否可以实现2个制造物,而可以检查多项式时间是否可以实现1个制造pan。
translated by 谷歌翻译
在本文中,我们提出了一种从3D点云生成分层的体积拓扑图的方法。我们的地图中有三个基本的分层级别:$ Storey - Region - 卷$。我们的方法的优点在输入和输出中反映。在输入方面,我们接受多层点云和建筑结构,倾斜的屋顶或天花板。在输出方面,我们可以使用不同维度的度量信息来生成结果,适用于不同的机器人应用。算法通过从3D Voxel占用映射生成$卷$来生成体积表示。然后,我们加入$段落$ s($卷$之间的连接),将小$卷$组合成一个大多数$地区$,并使用2D分段方法进行更好的拓扑表示。我们在几个可自由的数据集中评估我们的方法。实验突出了我们的方法的优势。
translated by 谷歌翻译
我们考虑如何通过鲁棒地计算其边界的缩回的在线过程直接提取最初未知的二维环境的路线图(也称为拓扑表示)。在本文中,我们首先在在线建设拓扑地图和执行控制法,以指导机器人到最近的未开发地区,首先介绍[1]。所提出的方法通过允许机器人在局部构造的地图上定位本身来操作,计算对环境(前沿)的未探究部分的路径,当机器人完全探索环境时计算稳健的终端条件,并实现环路闭合检测。所提出的算法导致机器人导航需求的平滑安全路径。所提出的方法是任何时间算法,其具有优点:它允许从激光扫描数据中获取激光扫描数据的主动创建拓扑映射。我们还提出了一种基于启发式的导航策略,其中机器人针对拓扑映射中的节点,该拓扑地图开放到空的空间。然后,我们通过呈现[1]中的工作,呈现一种利用特定光谱对应方法[2]的强度来扩展[1]的工作,以匹配从我们拓扑制作算法生成的映射环境。在这里,我们专注于实现一种可以使用AFF骨架来匹配映射环境的拓扑的系统。在两个给定地图和他们的AOF骷髅之间的拓扑匹配中,我们首先在两个不同环境的AFOF骨架上的点之间找到相应的通知。然后我们将环境的(2D)点对齐。我们还基于其提取的AOF骨架及其拓扑在两个给定的环境之间计算距离测量,作为对应点之间的匹配错误的总和。
translated by 谷歌翻译
我们提出了一种分层骨骼引导的运动计划算法来指导移动机器人。良好的骨骼绘制了C空间子空间的连接性,该子空间包含显着的自由度,并能够引导计划者快速找到所需的解决方案。但是,有时骨骼并不能密切代表自由的C空间,这通常会误导当前的骨架引导的计划者。分层骨骼指导的计划策略逐渐放松其对工作区骨骼的依赖,因为C空间被采样,从而逐渐返回了一条次优路径,该路径在标准骨架引导的算法中无法保证。与标准骨骼指导计划者和其他懒惰计划策略的实验比较显示了路线图施工时间的显着改善,同时保持混乱环境中多电量问题的路径质量。
translated by 谷歌翻译
我们提出了一种在带有多边形边界的连续平面工作区中,用于标记,磁盘形多机器人路径计划(MPP)的集中式算法。我们的方法会自动将连续问题转换为离散的基于图的变体,称为卵石运动问题,可以有效地解决。为了构建基础卵石图,我们通过内侧轴转换在工作区中的刻有圆圈,并将机器人组织到每个刻有圆圈内的层中。我们表明,我们的分层卵石图可实现无碰撞运动,使所有图形限制的MPP实例都是可行的。然后可以通过将机器人从与图形顶点路由和图形顶点求解的本地导航进行求解的MPP实例。我们在具有高机器人包装密度的多种环境(最高$ 61.6 \%的工作区)上测试了我们的方法。对于通道狭窄的环境,这种密度违反了最先进的MPP计划者做出的完善的假设,而我们的方法的平均成功率为$ 83 \%$。
translated by 谷歌翻译
本文提出了一种有效的算法来解决$ k $最短的非副总体路径计划($ k $ -snpp)问题。通过加速对2D环境的同拷贝增强空间的效率低下的探索,我们的基本思想是尽早确定非最佳路径拓扑,并终止沿它们的路径。这是一种非平凡的做法,因为当局部最短路径尚未完全构造时,必须在路径计划过程的中间状态下完成。换句话说,要比较的路径尚未在目标位置上进行划分,这使得同义理论,对具有相同端点的路径之间的空间关系建模,而不是适用。本文是开发基于系统的基于距离的拓扑简化机制来解决$ k $ -SNPP任务的第一份工作,其核心贡献是在构造它们之前主张基于距离的本地最短路径的基于距离的顺序。如果可以预测该订单,则证明具有超过$ K $的那些路径拓扑被证明没有所需的$ K $路径,因此可以在路径计划过程中安全丢弃。为此,提出了一棵层次拓扑树作为该机制的实现,其节点被证明可以在非副主导方向和边缘(无碰撞路径段)中扩展,在局部最短。有了有效的标准,可以观察到将部分构造的本地最短路径之间的顺序关系赋予树,将不会扩展以非 - $ k $最佳拓扑扩展的树节点。结果,解决$ K $ -SNPP问题的计算时间减少了两个数量级。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
长期以来,PATH规划一直是机器人技术的主要研究领域之一,PRM和RRT是最有效的计划者之一。尽管通常非常有效,但这些基于抽样的计划者在“狭窄通道”的重要情况下可能会变得昂贵。本文开发了专门为狭窄通道问题制定的路径规划范例。核心是基于计划由椭圆形工会封装的刚体机器人的计划。每个环境特征都使用具有$ \ Mathcal {C}^1 $边界的严格凸面来表示几何(例如,超级方面)。这样做的主要好处是,配置空间障碍物可以以封闭形式明确地进行参数化,从而可以使用先验知识来避免采样不可行的配置。然后,通过表征针对多个椭圆形的紧密体积,可以保证涉及旋转的机器人过渡无碰撞,而无需执行传统的碰撞检测。此外,通过与随机抽样策略结合使用,可以将提出的计划框架扩展到解决较高的维度问题,在该问题中,机器人具有移动的基础和铰接的附属物。基准结果表明,所提出的框架通常优于基于采样的计划者的计算时间和成功率,在找到单身机器人和具有较高维度配置空间的狭窄走廊的路径方面。使用建议的框架进行了物理实验,在人形机器人中进一步证明,该机器人在几个混乱的环境中行走,通道狭窄。
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
区域覆盖范围问题是使用安装在机器人(例如无人驾驶汽车(UAV)(UAV)和无人接地车辆(UGV)等机器人上的传感器有效维修给定的二维表面的任务。我们提出了一种新颖的配方,用于生成多个容量受限机器人的覆盖路线,可以根据电池寿命或飞行时间指定容量。遍历环境对具有容量限制的机器人资源产生了需求。我们方法的主要方面是将区域覆盖问题转换为线覆盖范围问题(即线性特征的覆盖范围),然后生成途径,以最大程度地减少旅行的总成本,同时尊重容量约束。我们定义了两种旅行模式:(1)维修和(2)无人机,这与机器人是否执行特定于任务的操作相对应。我们的配方允许对两种模式的单独和不对称的旅行成本和需求。此外,从细胞分解计算出来的细胞,旨在最小化转弯的数量,不需要单调多边形。我们为细胞分解和生成服务轨道开发了新的程序,这些过程可以处理有或没有孔的非符号酮多边形。我们在具有25个室内环境的地面机器人数据集和一个具有300个室外环境的空中机器人数据集上建立了算法的功效。该算法生成的解决方案的成本比最新方法平均低10%。我们还证明了我们在无人机实验中的算法。
translated by 谷歌翻译
我们提出了一种具有动态障碍的生物学启发方法,以避免动态障碍。路径计划是在自组织神经网络(SONN)产生的机器人的凝结配置空间中进行的。机器人本身和静态障碍物以及动态障碍物通过笛卡尔任务空间映射到构造空间,并通过预报的运动学绘制到配置空间。冷凝空间代表了环境的认知图,该图是受位置细胞和哺乳动物大脑认知图的概念的启发。培训数据的产生以及评估是在伴随模拟的实际工业机器人上进行的。为了评估不断变化的环境中无动碰撞在线计划,实现了演示者。然后,对基于样本的计划者进行了比较研究。因此,我们可以证明该机器人能够在动态变化的环境中运行,并在印象0.02秒内重新计划其运动轨迹,从而证明我们概念的实时能力。
translated by 谷歌翻译
在这项工作中,我们对屏障形成问题进行了结构和算法研究:选择分离平面中几组相互不相交的对象的直线段(屏障)的最大数量。该问题模拟了线路传感器(例如,红外激光束)的最佳放置,用于以配对方式隔离许多类型的区域,以便实际目的(例如,防止入侵)。即使我们想在平面中分开两组点数的最小行数,问题也是NP-sust。在具有最小线段的屏障形成的障碍问题下,检查了三个设置:点组的屏障,具有多边形障碍物的点组,具有多边形障碍物的多边形组。我们描述了在数学编程的帮助下计算前两个设置的最佳解决方案的方法,并为第三个提供2-OPT解决方案。我们通过广泛的模拟展示了我们方法的有效性。
translated by 谷歌翻译
本文介绍了经典懒惰的概率路线图算法(Lazy PRM)的修订,该算法是由配对PRM和一种新颖的分支和切割(BC)算法产生的。切割是动态生成的约束,这些约束在PRM选择的几何图上施加的最低成本路径。削减消除无法映射到满足适当定义运动学约束的平滑计划中的路径。我们通过在最低成本路径中将花键拟合到顶点来生成候选平滑计划。使用最近提出的算法对计划进行了验证,该算法将它们映射到有限的痕迹中,而无需选择固定的离散步骤。痕量元素准确地描述了计划交叉约束边界何时模拟算术精度。我们使用我们最近提出的谷仓基准的方法评估了几个计划者,我们报告了方法可扩展性的证据。
translated by 谷歌翻译
我们提出了一种新方法,用于在使用机器人运动计划中使用技术的静态和动态场景中的重定向方法来计算转向用户在物理空间中的无碰撞路径上的重定向增益。我们的第一个贡献是使用来自运动规划和配置空间的概念重定向的数学框架。该框架突出了各种几何和感知的限制,倾向于使无碰撞重定向行走困难。我们使用我们的框架提出了一个有效的解决方案,以便重定向问题使用可见性多边形的概念来计算物理环境和虚拟环境中的自由空间。可见性多边形提供了可见的整个空间的简明表示,并且因此可以从环境内的位置到用户。使用可行性空间的表示,我们应用重定向步行以将用户转向物理环境中的可见性多边形区域,该区域与用户占据虚拟环境中的可见性多边形中的区域密切相关。我们表明我们的算法能够沿着路径转向用户,这些路径导致比静态和动态场景中的现有最先进的算法显着更少的重置。我们的项目网站可在https://gamma.umd.edu/vis_poly/提供。
translated by 谷歌翻译
两种尺寸的模块化机器人的良好理论模型是边缘连接的方形模块配置,可以通过所谓的滑动移动重新配置。 Dumitrescu和Pach [图形和Combinatorics,2006]证明,始终可以将N $ Squares的一个边缘连接配置重新配置为任何其他使用$ O(n ^ 2)$滑动移动,同时保持配置连接每时每刻。对于某些配置,重新配置可能需要$ \ omega(n ^ 2)$滑动移动。然而,可能就足够较少。我们证明它是难以最小化给定对边缘连接配置的滑动移动的数量。在正面,我们呈现收集和紧凑,一个输入敏感的就地算法只需要$ O(\ bar {p} n)$ slide移动,将一个配置转换为另一个配置,其中$ \ bar {p} $两个边界框的最大周边。正方形仅在边界盒内移动,除了可以通过与边界框相邻的位置移动的时间最多的一个正方形。 $ O(\ bar {p} n)$绑定永远不会超过$ o(n ^ 2)$,并且在只需$ n $和$ \ bar {p} $ 。我们的算法建立在基本原理上,可以有效地转换模块化机器人的良好连接的组件。因此,我们迭代地提高配置内的连接,最终到达一个固体$ xy $-monotone组件。我们实施了聚集&紧凑,并通过实验进行了比较了Moreno和Searist的原始修改,Dumitrescu和PACH算法(MSDP)的[Eurocg 2020]。我们的实验表明,在所有类型的方形配置上,聚集和紧凑始终如一地优于MSDP。
translated by 谷歌翻译
本文的主要贡献是证明Omni方向绑扎机器人工作区的凸度(即,所有绑带长度可加入的机器人配置的集合)以及一组距离最佳的距离束缚的束缚的束缚路径计划算法该算法该算法该算法利用工作区凸度。该工作空间在拓扑上被证明是一个简单连接的子集,并且在几何上是所有配置集的凸子集。作为一个直接结果,两种配置之间的绑扎长度加入的最佳路径已被证明是通过通过串联的给定配置的串联串联指定的同置的无碰撞的本地最短路径,可以简单地通过表演来构建在2D环境中的无束缚路径缩短过程,而不是预定的工作空间中的路径搜索过程。凸度是束缚的机器人运动学的固有特性,因此对所有高级距离距离最佳的系绳路径计划任务产生了普遍影响:最耗时的工作空间预估算(WP)过程被替换为目标配置前的过程。计算过程(GCP)过程和同拷贝感知路径搜索过程被不受束缚的路径缩短过程取代。自然提出了由工作空间凸度的激励,有效解决以下问题的有效算法:(a)最佳的束缚重新配置(TR)计划问题是通过本地不受束缚的路径缩短(UPS)过程解决的,(b)经典的最佳绑扎路径(b) (TP)计划问题(从启动配置到未分配目标系绳状态的目标位置)通过GCP进程和$ N $ UPS流程解决,其中$ n $是绑带长度 - 加热配置的数量访问目标位置,(c)访问一系列多个目标位置的最佳束缚运动,称为
translated by 谷歌翻译
这项工作介绍了对刚体系统最短路径控制合成的性质的分析。我们在这项工作中关注的系统只有运动学约束。但是,即使对于看似简单的系统和约束,最近才发现通用刚体系统的最短途径,尤其是对于3D系统。基于Pontraygon的最大原理(MPM)和Lagrange方程,我们提供了最佳开关的必要条件,这些条件形成了控制合成边界。我们正式表明,附近配置的最短路径将具有相似的伴随函数和参数,即Lagrange乘数。我们进一步表明,必要条件方程的梯度可用于验证配置是在控制合成区域内还是在边界上。我们提出了一个程序,可以使用控制约束的梯度找到最短的运动学路径和控制合成。给定最短路径和相应的控制序列,只要且仅当它们属于同一控制合成区域时,才能得出附近配置的最佳控制序列。提出的程序可以适用于2D和3D刚体系统。我们使用2D Dubins车辆系统来验证所提出的方法的正确性。这项工作的扩展将提出更多的验证和实验。
translated by 谷歌翻译