我们提出了一种具有动态障碍的生物学启发方法,以避免动态障碍。路径计划是在自组织神经网络(SONN)产生的机器人的凝结配置空间中进行的。机器人本身和静态障碍物以及动态障碍物通过笛卡尔任务空间映射到构造空间,并通过预报的运动学绘制到配置空间。冷凝空间代表了环境的认知图,该图是受位置细胞和哺乳动物大脑认知图的概念的启发。培训数据的产生以及评估是在伴随模拟的实际工业机器人上进行的。为了评估不断变化的环境中无动碰撞在线计划,实现了演示者。然后,对基于样本的计划者进行了比较研究。因此,我们可以证明该机器人能够在动态变化的环境中运行,并在印象0.02秒内重新计划其运动轨迹,从而证明我们概念的实时能力。
translated by 谷歌翻译
为了安全,有效地与人合作,工业机器人需要改变它们的运动迅速在环境突然变化,如出现跨规划的轨迹障碍反应的能力。在实时运动规划,是实时通过视觉系统检测到的障碍物,以及新的轨迹规划针对的障碍的当前位置,并立即对机器人执行。现有的实时运动规划师,但是,缺乏处理后的平滑步骤 - 这是在抽样为基础的运动规划的关键 - 导致计划的轨迹是生涩的,因此效率低下和更少的人力友好。在这里,我们提出了基于shortcutting技术来解决这个问题的实时轨迹平滑。通过一种新颖的神经网络利用快速清除推断,所提出的方法是能够始终如一地均匀涂抹于商用的GPU中200ms的6-DOF工业机器人臂的轨迹。我们整合所提出的平滑成一个完整的视觉 - 运动规划 - 执行循环中,证明实时,流畅,工业机器人进行动态障碍的表现。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
在这项工作中,我们提出了一个基于工作空间的计划框架,尽管它使用冗余工作空间密钥点代表机器人状态,但可以利用可解释的几何信息,从而为复杂的机器人提供高质量的无碰撞路径。使用工作空间几何形状,我们首先找到每个钥匙点的无碰撞线性路径,以便在每个段的端点上,在密钥点之间满足距离约束。使用这些零件线性路径作为初始条件,我们可以执行优化步骤,以快速找到满足各种约束并将所有段组合在一起以获得有效路径的路径。我们表明,这些调整后的路径不太可能造成碰撞,并且建议的方法很快,可以产生良好的效果。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
本文的主要贡献是证明Omni方向绑扎机器人工作区的凸度(即,所有绑带长度可加入的机器人配置的集合)以及一组距离最佳的距离束缚的束缚的束缚路径计划算法该算法该算法该算法利用工作区凸度。该工作空间在拓扑上被证明是一个简单连接的子集,并且在几何上是所有配置集的凸子集。作为一个直接结果,两种配置之间的绑扎长度加入的最佳路径已被证明是通过通过串联的给定配置的串联串联指定的同置的无碰撞的本地最短路径,可以简单地通过表演来构建在2D环境中的无束缚路径缩短过程,而不是预定的工作空间中的路径搜索过程。凸度是束缚的机器人运动学的固有特性,因此对所有高级距离距离最佳的系绳路径计划任务产生了普遍影响:最耗时的工作空间预估算(WP)过程被替换为目标配置前的过程。计算过程(GCP)过程和同拷贝感知路径搜索过程被不受束缚的路径缩短过程取代。自然提出了由工作空间凸度的激励,有效解决以下问题的有效算法:(a)最佳的束缚重新配置(TR)计划问题是通过本地不受束缚的路径缩短(UPS)过程解决的,(b)经典的最佳绑扎路径(b) (TP)计划问题(从启动配置到未分配目标系绳状态的目标位置)通过GCP进程和$ N $ UPS流程解决,其中$ n $是绑带长度 - 加热配置的数量访问目标位置,(c)访问一系列多个目标位置的最佳束缚运动,称为
translated by 谷歌翻译
为了实现无冲突的人机合作,机器人代理需要巧妙地避免在实现集体目标的同时不断地移动障碍。有时,这些障碍甚至可以同时改变其3D形状和形式,因此是“无定形的”。为此,本文提出了动态的无定形障碍物避免(DAO-A)的问题,在该问题中,机器人的手臂可以右翼避免动态产生的障碍,从而不断改变其轨迹和3D形式。具体来说,我们为机器人臂引入了一种新颖的控制策略,该策略既利用拓扑流形学习,又利用最新的深度学习进步。我们在模拟和物理实验中使用7多型机器人操纵器测试我们的学习框架,该机器人令人满意地学习并综合了避免以前未见的障碍的现实技能,同时产生了新颖的动作,以实现预定的运动目标。最值得注意的是,对于给定的机器人操纵器而言,我们学到的学到的方法可以避免使用任意和看不见的移动轨迹的任何数量的3D障碍
translated by 谷歌翻译
在本文中,提出了一种基于静态障碍的环境中实验室规模3D龙门起重机的基于抽样的轨迹计划算法,并呈现了龙门起重机系统速度和加速度的范围。重点是针对差异化系统开发快速运动计划算法,在该系统中可以存储和重复使用中间结果以进行进一步的任务,例如重新植入。所提出的方法基于知情的最佳迅速探索随机树算法(知情RRT*),该算法用于构建轨迹树,这些树在开始和/或目标状态变化时重新使用。与最先进的方法相反,拟议的运动计划算法包含了线性二次最低时间(LQTM)本地计划者。因此,在提出的算法中直接考虑了动态特性,例如时间最优性和轨迹的平滑度。此外,通过集成分支和结合方法以在轨迹树上执行修剪过程,提出的算法可以消除树中没有促成更好解决方案的点中的点。这有助于抑制记忆消耗并降低运动(RE)计划期间的计算复杂性。 3D龙门起重机的经过验证的数学模型的仿真结果显示了所提出的方法的可行性。
translated by 谷歌翻译
过去的十年充分证明了通过学习复杂的输入/输出关系可以实现的显着功能。从算法上讲,最重要,最不透明的关系之一是问题的结构与有效的解决方案方法之间。在这里,我们将计划问题的结构定量地连接到基于给定抽样的运动计划(SBMP)算法的性能。我们证明,运动计划问题的几何关系可以通过图神经网络(GNN)很好地捕获,以预测SBMP运行时。通过使用算法投资组合,我们表明可以利用GNN对特定问题的运行时预测,以在导航和操纵任务中加速在线运动计划。此外,可以倒置问题到倒及地图,以识别易于通过特定SBMP求解的子问题。我们提供了一个激励人物的例子,说明如何使用这些知识来改善模拟示例的集成任务和运动计划。这些成功依赖于GNN的关系结构来捕获从低维导航任务到3D环境中高度自由度操纵任务的可扩展概括。
translated by 谷歌翻译
尽管使用多个无人机(UAV)具有快速自主探索的巨大潜力,但它的关注程度很少。在本文中,我们提出了赛车手,这是一种使用分散无人机的舰队的快速协作探索方法。为了有效派遣无人机,使用了基于在线HGRID空间分解的成对交互。它可确保仅使用异步和有限的通信同时探索不同的区域。此外,我们优化了未知空间的覆盖路径,并通过电容的车辆路由问题(CVRP)配方平衡分区到每个UAV的工作负载。鉴于任务分配,每个无人机都会不断更新覆盖路径,并逐步提取关键信息以支持探索计划。分层规划师可以找到探索路径,完善本地观点并生成序列的最小时间轨迹,以敏捷,安全地探索未知空间。对所提出的方法进行了广泛的评估,显示出较高的勘探效率,可伸缩性和对有限交流的鲁棒性。此外,我们第一次与现实世界中的多个无人机进行了完全分散的协作探索。我们将作为开源软件包发布实施。
translated by 谷歌翻译
自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
我们提出了一种分层骨骼引导的运动计划算法来指导移动机器人。良好的骨骼绘制了C空间子空间的连接性,该子空间包含显着的自由度,并能够引导计划者快速找到所需的解决方案。但是,有时骨骼并不能密切代表自由的C空间,这通常会误导当前的骨架引导的计划者。分层骨骼指导的计划策略逐渐放松其对工作区骨骼的依赖,因为C空间被采样,从而逐渐返回了一条次优路径,该路径在标准骨架引导的算法中无法保证。与标准骨骼指导计划者和其他懒惰计划策略的实验比较显示了路线图施工时间的显着改善,同时保持混乱环境中多电量问题的路径质量。
translated by 谷歌翻译
操纵可变形的线性对象(DLOS)在有障碍的受约束环境中实现所需的形状是一项有意义但具有挑战性的任务。对于这项高度约束的任务是必要的;但是,由于规划人员的可变形性质,计划人员需要的准确模型很难获得,并且不可避免的建模错误会显着影响计划结果,如果机器人只是以开环的方式执行计划的路径,则可能导致任务失败。在本文中,我们提出了一个粗到精细的框架,以结合全球计划和局部控制,以进行双臂操纵DLO,能够精确实现所需的配置并避免DLO,机器人和障碍物之间的潜在碰撞。具体而言,全球规划师是指一个简单而有效的DLO能量模型,并计算出一条粗略的途径,以确保任务的可行性。然后,本地控制器遵循该路径作为指导,并通过闭环反馈进一步塑造它,以补偿计划错误并保证任务的准确性。仿真和现实世界实验都表明,我们的框架可以在使用不精确的DLO模型的受约束环境中稳健地实现所需的DLO配置。仅通过计划或控制就无法可靠地实现。
translated by 谷歌翻译
Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
长期以来,PATH规划一直是机器人技术的主要研究领域之一,PRM和RRT是最有效的计划者之一。尽管通常非常有效,但这些基于抽样的计划者在“狭窄通道”的重要情况下可能会变得昂贵。本文开发了专门为狭窄通道问题制定的路径规划范例。核心是基于计划由椭圆形工会封装的刚体机器人的计划。每个环境特征都使用具有$ \ Mathcal {C}^1 $边界的严格凸面来表示几何(例如,超级方面)。这样做的主要好处是,配置空间障碍物可以以封闭形式明确地进行参数化,从而可以使用先验知识来避免采样不可行的配置。然后,通过表征针对多个椭圆形的紧密体积,可以保证涉及旋转的机器人过渡无碰撞,而无需执行传统的碰撞检测。此外,通过与随机抽样策略结合使用,可以将提出的计划框架扩展到解决较高的维度问题,在该问题中,机器人具有移动的基础和铰接的附属物。基准结果表明,所提出的框架通常优于基于采样的计划者的计算时间和成功率,在找到单身机器人和具有较高维度配置空间的狭窄走廊的路径方面。使用建议的框架进行了物理实验,在人形机器人中进一步证明,该机器人在几个混乱的环境中行走,通道狭窄。
translated by 谷歌翻译
我们提出了一种使用条件生成对抗网络(CGANS)在机器人关节空间和潜在空间之间转换的新方法,以进行无碰撞路径计划,该方法仅捕获以障碍物图来捕获关节空间的无碰撞区域。操纵机器人臂时,很方便地生成多个合理的轨迹进行进一步选择。此外,出于安全原因,有必要生成轨迹,以避免与机器人本身或周围环境发生碰撞。在提出的方法中,可以通过将开始和目标状态与此生成的潜在空间中的任意线段连接起来和目标状态来产生各种轨迹。我们的方法提供了此无碰撞潜在空间,此后,任何使用任何优化条件的计划者都可以使用任何计划器来生成最合适的路径。我们通过模拟和实际的UR5E 6-DOF机器人臂成功验证了这种方法。我们确认可以根据优化条件的选择生成不同的轨迹。
translated by 谷歌翻译