由于(1)低资源语言的数据稀缺,(2)培训和清爽100+单语言模型的昂贵计算成本,培训和部署混合语音识别的变压器LMS以低资源语言重新排行第二通道是具有挑战性的。,以及(3)考虑流量稀疏的效率低下。在这项研究中,我们提出了一种新的方法,将多个低资源的区域分组在一起,并优化ASR中多语言变压器LMS的性能。我们的本地组多语言变压器LMS的表现优于传统的多语言LM,以及降低维护成本和运营费用。此外,对于部署单语模型的低资源但人口流量的地区是可行的,我们表明,对我们的语言环境组的多语言LMS进行微调可产生比基线单语LMS更好的单语LM候选者。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
多语种预训练模型在许多多语言NLP任务中展示了它们的有效性,并使从高资源语言到低资源的零射击或几秒钟传输。然而,由于某种语言之间的显着的类型差异和矛盾,这些模型通常在许多语言和交叉语言设置上表现不佳,这表明了学习单一模型同时处理大规模不同语言的难度。为了减轻这个问题,我们提出了一个新的多语言预训练管道。我们建议从多语言预先训练的模型产生语言表示,并进行语言分析,以表明语言表示相似度反映了从多个角度来看的语言相似度,包括语言家庭,地理蓝星,词汇表演和语法。然后,我们将所有目标语言集成到多个组中,并将每个组名称为表示SprachBund。因此,在同一表示SprachBund中的语言应该在培训和微调中互相提升,因为它们共享丰富的语言相似性。我们预先列车为每个代表斯普拉克班达一个多语言模型。实验在交叉基准上进行,与强基线相比,实现了显着的改进。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
虽然审慎的语言模型(PLM)主要用作通用文本编码器,可以对各种下游任务进行微调,但最近的工作表明它们也可以重新连接以产生高质量的单词表示(即静态单词)嵌入)并在类型级词汇任务中产生良好的性能。虽然现有的工作主要集中在单语和双语环境中PLM的词汇专业化,但在这项工作中,我们将大规模多语言变压器(例如MMTS,例如Mbert或XLM-R)公开,以此为大规模的多语言词法知识,并利用Babelnet作为易于获得的丰富来源。多语言和跨语性类型级词汇知识。具体来说,我们利用Babelnet的多语言合成器来创建$ 50 $语言的同义词对,然后对MMTS(Mbert和XLM-R)进行对比目标指导的词汇专业化程序。我们表明,如此庞大的多语言词汇专业化为两项标准的跨语性词汇任务,双语词典感应和跨语性单词相似性以及跨语性句子检索带来了巨大的收益。至关重要的是,我们观察到在专业化中看不见的语言的收益,表明多语言词汇专业化使得概括无词法约束。在一系列随后的受控实验中,我们证明了MMT对专业化语言中单词表示的预处理质量对性能的影响要比一组约束集的语言多样性更大。令人鼓舞的是,这表明涉及低资源语言的词汇任务从资源丰富的语言的词汇知识中受益最大,通常更多。
translated by 谷歌翻译
This paper presents the work of restoring punctuation for ASR transcripts generated by multilingual ASR systems. The focus languages are English, Mandarin, and Malay which are three of the most popular languages in Singapore. To the best of our knowledge, this is the first system that can tackle punctuation restoration for these three languages simultaneously. Traditional approaches usually treat the task as a sequential labeling task, however, this work adopts a slot-filling approach that predicts the presence and type of punctuation marks at each word boundary. The approach is similar to the Masked-Language Model approach employed during the pre-training stages of BERT, but instead of predicting the masked word, our model predicts masked punctuation. Additionally, we find that using Jieba1 instead of only using the built-in SentencePiece tokenizer of XLM-R can significantly improve the performance of punctuating Mandarin transcripts. Experimental results on English and Mandarin IWSLT2022 datasets and Malay News show that the proposed approach achieved state-of-the-art results for Mandarin with 73.8% F1-score while maintaining a reasonable F1-score for English and Malay, i.e. 74.7% and 78% respectively. Our source code that allows reproducing the results and building a simple web-based application for demonstration purposes is available on Github.
translated by 谷歌翻译
We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we train bilingual speech-to-speech translation models on mined data only and establish extensive baseline results on EuroParl-ST, VoxPopuli and FLEURS test sets. Enabled by the multilinguality of SpeechMatrix, we also explore multilingual speech-to-speech translation, a topic which was addressed by few other works. We also demonstrate that model pre-training and sparse scaling using Mixture-of-Experts bring large gains to translation performance. The mined data and models are freely available.
translated by 谷歌翻译
最先进的神经(RE)排名者是众所周知的渴望数据,鉴于缺乏英语以外的其他语言培训数据 - 使它们很少用于多语言和跨语性检索设置。因此,当前的方法通常是通过多语言编码器培训的英语数据和跨语言设置的通常转移排名者:它们通过对英语相关性判断的所有预审预周化的多语言变压器(例如MMT,例如多语言BERT)的所有参数微调所有参数。用目标语言部署它们。在这项工作中,我们表明了两种参数效率的跨语性转移方法,即稀疏的微调蒙版(SFTM)和适配器,允许更轻巧,更有效的零拍传输到多语言和跨语言检索任务。我们首先通过蒙版语言建模来训练语言适配器(或SFTM),然后在最上方训练检索(即重新固定)适配器(SFTM),同时将所有其他参数保持固定。在推断时,这种模块化设计使我们能够通过应用(或SFTM)与源语言数据一起训练的(RE)排名适配器(或SFTM)以及目标语言的语言适配器(或SFTM)。我们对CLEF-2003和HC4基准进行了大规模的评估,此外,作为另一个贡献,我们还用三种新语言进行查询:吉尔吉斯,Uyghur和Turkish。所提出的参数效率方法的表现优于标准零射击传输,并具有完整的MMT微调,同时是模块化和减少训练时间。对于低资源语言,收益特别明显,我们的方法也大大优于基于竞争的机器翻译的排名。
translated by 谷歌翻译
我们对真正低资源语言的神经机翻译(NMT)进行了实证研究,并提出了一个训练课程,适用于缺乏并行培训数据和计算资源的情况,反映了世界上大多数世界语言和研究人员的现实致力于这些语言。以前,已经向低资源语言储存了使用后翻译(BT)和自动编码(AE)任务的无监督NMT。我们证明利用可比的数据和代码切换作为弱监管,与BT和AE目标相结合,即使仅使用适度的计算资源,低资源语言也会显着改进。在这项工作中提出的培训课程实现了Bleu分数,可通过+12.2 Bleu为古吉拉特和+3.7 Bleu为哈萨克斯培训的监督NMT培训,展示了弱势监督的巨大监督态度资源语言。在受到监督数据的培训时,我们的培训课程达到了索马里数据集(索马里29.3的BLEU的最先进的结果)。我们还观察到增加更多时间和GPU来培训可以进一步提高性能,强调报告在MT研究中的报告资源使用的重要性。
translated by 谷歌翻译
多语言自动语音识别(ASR)系统大多受益于低资源语言,但相对于单语言对应物,多种语言的性能下降。有限的研究集中在理解多语言语音识别设置中的语言行为。在本文中,提出了一种新型的数据驱动方法来研究跨语性的声学表达相似性。该技术衡量了各种单语言模型与目标语音信号的后验分布之间的相似性。深度神经网络被训练为映射网络,以将分布从不同的声学模型转换为直接比较的形式。分析观察到,语言接近性无法通过集合音素的体积真正估计。对拟议的映射网络的熵分析表明,具有较小重叠的语言可以更适合跨语性转移,因此在多语言设置中更有益。最后,提出的后验变换方法被利用为目标语言的单语模型融合。比单语言对应物的相对提高约为8%。
translated by 谷歌翻译
在所有人类语言对之间实现通用翻译是机器翻译的圣杯(MT)研究。虽然最近在大量的多语言MT中的进展是达到这一目标的一步,但它变得明显,即简单地通过在更加平行数据上训练扩展多语言MT系统是不可编译的,因为用于低资源和非英语的标记数据的可用性 - 姓氏对禁止有限。为此,我们展示了一种务实的方法,可以使用监督和自我监督目标的混合来构建涵盖数百种语言的多语种MT模型,具体取决于不同语言对的数据可用性。我们展示这两种训练范例之间的协同作用使模型能够在零资源设置中产生高质量的翻译,甚至超过监控的用于中资和中资和中资质。我们开展广泛的实验,了解多语言监督,域错配和平行和单机数据量的效果,以了解我们自我监督的多语言模型的质量。为了展示方法的可扩展性,我们培训具有200多种语言的模型,并在几个先前研究的语言上展示了对零资源翻译的高性能。我们希望我们的调查结果将成为踏脚石,以便为下一千种语言进行翻译。
translated by 谷歌翻译
自我监督的培训表明预先训练模型的有希望的收益,并促进了对语音识别的下游尖端,如多语言ASR。大多数现有方法采用一个2阶段方案,其中自我监督损失在第一个预先预订阶段进行了优化,并在第二阶段的标准监督的FINETUNING恢复。在本文中,我们提出了一部结束(E2E)联合无监督和监督培训(Just)方法,以将监督的RNN-T损失和自我监督的对比和屏蔽语言建模(MLM)损失结合起来。我们在公共数据集多语言LibrisPeech(MLS)上验证其性能,其中包括8种语言,非常不平衡。在MLS上,我们探索(1)刚从划痕训练,(2)刚从佩戴检查站训练。实验表明,只需始终如一地胜过其他现有的最先进的方法,并通过显着的保证金击败单声道基线,展示了在多语言ASR中处理低资源语言的能力。我们的平均WER所有语言都优于平均单声道基线33.3%,最先进的2级XLSR达到32%。在低资源语言如波兰语,我们的WER不到一半的单机基线,甚至击败了使用外部监管的监督转移学习方法。
translated by 谷歌翻译
This paper demonstrates that multilingual denoising pre-training produces significant performance gains across a wide variety of machine translation (MT) tasks. We present mBART -a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective . mBART is the first method for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. Pre-training a complete model allows it to be directly fine tuned for supervised (both sentence-level and document-level) and unsupervised machine translation, with no task-specific modifications. We demonstrate that adding mBART initialization produces performance gains in all but the highest-resource settings, including up to 12 BLEU points for low resource MT and over 5 BLEU points for many document-level and unsupervised models. We also show it also enables new types of transfer to language pairs with no bi-text or that were not in the pre-training corpus, and present extensive analysis of which factors contribute the most to effective pre-training.
translated by 谷歌翻译
我们介绍了一个CLSRIL-23,一个自我监督的基于学习的音频预训练模型,它学习了来自23个指示语言的原始音频的交叉语言语音表示。它基于Wav2Vec 2.0之上,通过培训蒙面潜在语音表示的对比任务来解决,并共同了解所有语言共享的潜伏的量化。我们在预磨练期间比较语言明智的损失,以比较单机和多语言预制的影响。还比较了一些下游微调任务的表现,并且我们的实验表明,在学习语音表示方面,我们的实验表明,在学习语言的语音表示方面,以及在沿着流的性能方面的学习语音表示。在Hindi中使用多语言预磨模模型时,在WER中观察到5%的减少,9.5%。所有代码模型也都是开放的。 CLSRIL-23是一款以23美元的价格培训的型号,以及近10,000小时的音频数据培训,以促进在语言中的语音识别研究。我们希望将使用自我监督方法创建新的最新状态,特别是对于低资源指示语言。
translated by 谷歌翻译
最近,大型预用语言模型(LMS)越来越受欢迎。培训这些模型需要更多的计算资源,并且大多数现有模型仅在英文文本上培训。以其他语言训练这些模型非常昂贵。为了缓解这个问题,我们介绍了一种叫做威施塞的方法 - 将英语模型传输到新语言。我们将英语模型的销量与目标语言中的销量交换,并初始化令牌嵌入式,以便通过利用覆盖英语和目标语言的多语言静态字嵌入来初始化令牌嵌入式。我们使用Wechsel将GPT-2和Roberta模型转移到4种其他语言(法语,德语,中文和斯瓦希里语)。 Wechsel通过以前提出的跨语言参数转移和优于比较大小的模型来改善从目标语言的划痕训练的相当大小的型号,距离培训速度较小。我们的方法使培训大型语言模型为新语言更容易访问,更少损害环境。我们宣传我们的代码和型号。
translated by 谷歌翻译
多语言预训练的语言模型(PLM)在高资源和低资源语言的下游任务上表现出令人印象深刻的表现。但是,在预培训期间,尤其是非洲语言中,看不见的语言仍然有很大的表现。适应新语言的最有效方法之一是\ textit {语言自适应微调}(LAFT) - 使用预训练目标对单语言的多语言PLM进行微调。但是,适应目标语言会单独使用大磁盘空间,并限制了由此产生的模型的跨语言转移能力,因为它们已经专门用于单语言。在本文中,我们对17种最重要的非洲语言和其他三种在非洲大陆上广泛使用的高资源语言对17种最具资源的非洲语言进行\ Textit {多语言自适应微调},以鼓励跨语性转移学习。为了进一步专注于多语言PLM,我们从嵌入式层中删除了与MAFT之前的非非洲写作脚本相对应的词汇令牌,从而将模型大小降低了约50%。我们对两个多语言PLM(Afriberta和XLM-R)和三个NLP任务(NER,新闻主题分类和情感分类)的评估表明,我们的方法可以在单个语言上应用LAFT,同时需要较小的磁盘空间。此外,我们表明我们的适应性PLM还提高了参数有效微调方法的零击跨语性转移能力。
translated by 谷歌翻译
GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
深层语言语言模型(LMS)如Elmo,BERT及其继任者通过预先训练单个模型来迅速缩放自然语言处理的景观,然后是任务特定的微调。此外,像XLM-R和MBERT这样的这种模型的多语言版本使得有希望的零射击交叉传输导致,可能在许多不足和资源不足的语言中实现NLP应用。由于此初步成功,预先接受的模型被用作“通用语言模型”作为不同任务,域和语言的起点。这项工作通过识别通用模型应该能够扩展的七个维度来探讨“普遍性”的概念,即同样良好或相当良好地执行,在不同的环境中有用。我们概述了当前支持这些维度的模型性能的当前理论和经验结果,以及可能有助于解决其当前限制的扩展。通过这项调查,我们为理解大规模上下文语言模型的能力和限制奠定了基础,并帮助辨别研究差距和未来工作的方向,使这些LMS包含多样化和公平的应用,用户和语言现象。
translated by 谷歌翻译
一种有效的横向传输方法是在一种语言中微调在监督数据集上的双语或多语言模型,并以零拍方式在另一种语言上进行评估。在培训时间或推理时间翻译例子也是可行的替代方案。然而,存在与文献中很少有关的这些方法相关的成本。在这项工作中,我们在其有效性(例如,准确性),开发和部署成本方面分析交叉语言方法,以及推理时间的延迟。我们的三个任务的实验表明最好的交叉方法是高度任务依赖性的。最后,通过结合零射和翻译方法,我们在这项工作中使用的三个数据集中实现了最先进的。基于这些结果,我们对目标语言手动标记的培训数据有所了解。代码和翻译的数据集可在https://github.com/unicamp-dl/cross-lingsual-analysis上获得
translated by 谷歌翻译