最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
我们介绍了一个CLSRIL-23,一个自我监督的基于学习的音频预训练模型,它学习了来自23个指示语言的原始音频的交叉语言语音表示。它基于Wav2Vec 2.0之上,通过培训蒙面潜在语音表示的对比任务来解决,并共同了解所有语言共享的潜伏的量化。我们在预磨练期间比较语言明智的损失,以比较单机和多语言预制的影响。还比较了一些下游微调任务的表现,并且我们的实验表明,在学习语音表示方面,我们的实验表明,在学习语言的语音表示方面,以及在沿着流的性能方面的学习语音表示。在Hindi中使用多语言预磨模模型时,在WER中观察到5%的减少,9.5%。所有代码模型也都是开放的。 CLSRIL-23是一款以23美元的价格培训的型号,以及近10,000小时的音频数据培训,以促进在语言中的语音识别研究。我们希望将使用自我监督方法创建新的最新状态,特别是对于低资源指示语言。
translated by 谷歌翻译
端到端(E2E)模型已成为最新语音识别系统的默认选择。此类型号经过大量标记数据的培训,这些数据通常无法用于低资源语言。诸如自我监督学习和转移学习的诺言之类的技术尚未在培训准确的模型中有效。另一方面,在各种域和扬声器集合上收集标记的数据集非常昂贵。在这项工作中,我们通过公共资料中的印度语言,特别是来自印度广播电台的公共档案馆的印度语言的``采矿''文本和音频对展示了这些方法的廉价和有效替代方案。作为关键组件,我们将Needleman-Wunsch算法调整为与相应的音频片段对齐句子,并给定长音频和其转录本的PDF,同时由于OCR,无关紧要的文本和未转录的语音而对错误进行了强大的态度。因此,我们创建了Shrutilipi,这是一个数据集,其中包含超过6,400个小时的12个印度语言标签的音频,总计为495万个句子。平均而言,Shrutilipi导致2.3倍增加了公开可用的标签数据。我们在12种语言中与21种人类评估者建立了Shrutilipi的质量。我们还根据代表区域,说话者和提到的实体建立了Shrutilipi的多样性。值得注意的是,我们表明,将Shrutilipi添加到WAV2VEC模型的训练集中,导致在Indicsuperb基准上的7种语言中,平均降低了5.8 \%。对于具有最多基准的印地语(7),平均水平从18.8%下降到13.5%。这种改进扩展到有效的模型:对于构象异构体模型(比WAV2VEC小10倍),我们显示出2.3%的下降。最后,我们通过证明对其进行训练的模型对嘈杂的输入更强大,证明了Shrutilipi的多样性。
translated by 谷歌翻译
开发语音技术是对低资源语言的挑战,其中注释和原始语音数据稀疏。马耳他是一种这样的语言。近年来,对马耳他的计算处理有所增加,包括语音技术,但后者的资源仍然稀疏。在本文中,我们考虑提高这些语言的语音识别的数据增强技术,专注于马耳他作为测试用例。我们考虑三种不同类型的数据增强:无监督的培训,多语言培训和合成演讲的使用作为培训数据。目标是确定这些技术或它们的组合,是改善起始点是大约7小时转录语音的语言的语言的最有效。我们的结果表明,在这里研究了三种数据增强技术,导致我们在不使用语言模型的情况下实现15%的绝对增长。
translated by 谷歌翻译
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 1 1 Code and models are available at https://github.com/pytorch/fairseq Preprint. Under review.
translated by 谷歌翻译
我们提出Vakyansh,这是一种用指示语言识别语音识别的端到端工具包。印度拥有近121种语言和大约125亿扬声器。然而,大多数语言在数据和预验证的模型方面都是低资源。通过Vakyansh,我们介绍了自动数据管道,用于数据创建,模型培训,模型评估和部署。我们以23个指示语言和Train Wav2Vec 2.0预验证的模型创建14,000小时的语音数据。然后,对这些预审预告措施的模型进行了修订,以创建18个指示语言的最先进的语音识别模型,其次是语言模型和标点符号修复模型。我们以使命开源所有这些资源,这将激发语音社区使用ASR模型以指示语言开发语音的首次应用程序。
translated by 谷歌翻译
已经证明了深度学习技术在各种任务中有效,特别是在语音识别系统的发展中,即旨在以一系列写词中的音频句子转录音频句子的系统。尽管该地区进展,但语音识别仍然可以被认为是困难的,特别是对于缺乏可用数据的语言,例如巴西葡萄牙语(BP)。从这个意义上讲,这项工作介绍了仅使用打开可用的音频数据的公共自动语音识别(ASR)系统的开发,从Wav2Vec 2.0 XLSR-53模型的微调,在许多语言中,通过BP数据进行了多种。最终模型在7个不同的数据集中呈现12.4%的平均误差率(在应用语言模型时10.5%)。根据我们的知识,这是开放ASR系统中BP的最佳结果。
translated by 谷歌翻译
在本文中,我们介绍了从包含超过80,000个小时的未标记的语音的大型数据集预处理捷克单语音频变压器方面的进展,随后使用内域数据组合对自动语音识别任务进行微调,并对模型进行微调。6000小时的跨域转录语音。我们在两个公共数据集(CommunVoice和Voxpopuli)和Malach Project中的一个非常具有挑战性的数据集中评估了各种微调设置的大量实验调色板。我们的结果表明,单语WAV2VEC 2.0模型是强大的ASR系统,它可以利用大型标记和未标记的数据集并成功与最先进的LVCSR系统竞争。此外,当没有用于目标ASR任务的培训数据时,WAV2VEC模型被证明是很好的零射门学习者。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-ofthe-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 1
translated by 谷歌翻译
We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
translated by 谷歌翻译
我们介绍Samanantar,是最大的公开可用的并行Corpora Collection,用于指示语言。该集合中的英语和11个上线语言之间总共包含4970万句对(来自两种语言系列)。具体而言,我们从现有的公共可用并行基层编译1240万句对,另外,从网络上挖掘3740万句对,导致4倍增加。我们通过组合许多语料库,工具和方法来挖掘网站的并行句子:(a)Web爬行单格式语料库,(b)文档OCR,用于从扫描的文档中提取句子,(c)用于对齐句子的多语言表示模型,以及(d)近似最近的邻居搜索搜索大量句子。人类评估新矿业的Corpora的样本验证了11种语言的高质量平行句子。此外,我们使用英语作为枢轴语言,从英式并行语料库中提取所有55个指示语言对之间的834百万句子对。我们培训了跨越Samanantar上所有这些语言的多语种NMT模型,这在公开可用的基准上表现出现有的模型和基准,例如弗洛雷斯,建立萨曼塔尔的效用。我们的数据和模型可在Https://indicnlp.ai4bharat.org/samanantar/上公开提供,我们希望他们能够帮助推进NMT和Multibingual NLP的研究。
translated by 谷歌翻译
AI研究中的基石是创建和采用标准化培训和测试数据集,以指定最新模型的进度。一个特别成功的例子是用于培训和评估英语自然语言理解(NLU)模型的胶水数据集。围绕基于BERT的语言模型的大量研究围绕着胶水中NLU任务的性能改进。为了评估其他语言的语言模型,创建了几个特定语言的胶水数据集。语音语言理解(SLU)的领域遵循了类似的轨迹。大型自我监督模型(例如WAV2VEC2)的成功实现了具有相对易于访问的未标记数据的语音模型。然后可以在SLU任务(例如出色的基准测试)上评估这些模型。在这项工作中,我们将其扩展到通过释放Indicsuperb基准测试来指示语言。具体来说,我们做出以下三项贡献。 (i)我们收集了Kathbath,其中包含来自印度203个地区的1,218个贡献者的12个印度语言的1,684小时的标记语音数据。 (ii)使用Kathbath,我们在6个语音任务中创建基准:自动语音识别,扬声器验证,说话者识别(单声道/多),语言识别,逐个示例查询以及对12种语言的关键字发现。 (iii)在发布的基准测试中,我们与常用的基线Fbank一起训练和评估不同的自我监督模型。我们表明,在大多数任务上,特定于语言的微调模型比基线更准确,包括对于语言识别任务的76 \%差距。但是,对于说话者识别,在大型数据集上训练的自我监督模型证明了一个优势。我们希望Indicsuperb有助于发展印度语言的语音语言理解模型的进步。
translated by 谷歌翻译
捷克语是一种非常特殊的语言,因为它在形式和口语形式之间的差异很大。虽然正式(书面)形式主要用于官方文件,文学和公开演讲,但通言(口语)表格在休闲演讲中被广泛使用。该差距引入了ASR系统的严重问题,尤其是在培训或评估包含大量口语语音(例如Malach Project)的数据集上的ASR模型时。在本文中,我们正在根据端到端ASR系统中的新范式解决这个问题,最近引入了自我监督的音频变压器。具体而言,我们正在研究口语语音对WAV2VEC 2.0模型性能的影响及其直接转录口语演讲的能力。我们在培训成绩单,语言模型和评估笔录中以正式和口语形式提出结果。
translated by 谷歌翻译
语音的视频录制包含相关的音频和视觉信息,为语音表示从扬声器的唇部运动和产生的声音提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HUBERT),是视听语音的自我监督的代表学习框架,这些屏幕屏蔽了多流视频输入并预测自动发现和迭代地精制多模式隐藏单元。 AV-HUBERT学习强大的视听语音表示,这些语音表示受益于唇读和自动语音识别。在最大的公众唇读基准LRS3(433小时)中,AV-Hubert达到32.5%WER,只有30个小时的标签数据,优于前一种最先进的方法(33.6%)培训,达到了一千次转录的视频数据(31k小时)。当使用来自LRS3的所有433小时的标记数据并结合自培训时,唇读WER进一步降低至26.9%。使用我们在相同的基准测试中使用您的视听表示,用于音频语音识别的相对效率为40%,而最先进的性能(1.3%Vs 2.3%)。我们的代码和模型可在https://github.com/facebookResearch/av_hubert获得
translated by 谷歌翻译
学习高级语音表征的自学学习(SSL)一直是在低资源环境中构建自动语音识别(ASR)系统的一种流行方法。但是,文献中提出的共同假设是,可以使用可用于SSL预训练的相同域或语言的大量未标记数据,我们承认,在现实世界中,这是不可行的。在本文中,作为Interspeech Gram Vaani ASR挑战的一部分,我们尝试研究域,语言,数据集大小和上游训练SSL数据对最终性能下游ASR任务的效果。我们还建立在持续的训练范式的基础上,以研究使用SSL训练的模型所拥有的先验知识的效果。广泛的实验和研究表明,ASR系统的性能易受用于SSL预训练的数据。它们的性能随着相似性和预训练数据量的增加而提高。我们认为,我们的工作将有助于语音社区在低资源环境中建立更好的ASR系统,并引导研究改善基于SSL的语音系统预培训的概括。
translated by 谷歌翻译
Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent in data-scarce settings, such as low-resource languages, where diversity of training data is limited. In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a $120$ hour speech corpus for Greek, consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques is particularly effective, yielding word error rates comparable to the fully supervised baselines.
translated by 谷歌翻译
培训多语言自动语音识别(ASR)系统具有挑战性,因为声学和词汇信息通常是特定于语言的。由于缺乏开源数据集和不同方法的结果,培训对Indo语言的多语言系统更加困难。我们将端到端多语言语音识别系统的性能与以语言识别(LID)为条件的单语模型的性能进行比较。来自多语言模型的解码信息用于语言识别,然后与单语模型结合使用,以改善跨语言的50%WER。我们还提出了一种类似的技术来解决代码切换问题,并在印度英语和孟加拉国英语中分别达到21.77和28.27。我们的工作谈到了如何将基于变压器的ASR尤其是WAV2VEC 2.0应用于开发用于指示语言的多语言ASR和代码转换ASR。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译