在所有人类语言对之间实现通用翻译是机器翻译的圣杯(MT)研究。虽然最近在大量的多语言MT中的进展是达到这一目标的一步,但它变得明显,即简单地通过在更加平行数据上训练扩展多语言MT系统是不可编译的,因为用于低资源和非英语的标记数据的可用性 - 姓氏对禁止有限。为此,我们展示了一种务实的方法,可以使用监督和自我监督目标的混合来构建涵盖数百种语言的多语种MT模型,具体取决于不同语言对的数据可用性。我们展示这两种训练范例之间的协同作用使模型能够在零资源设置中产生高质量的翻译,甚至超过监控的用于中资和中资和中资质。我们开展广泛的实验,了解多语言监督,域错配和平行和单机数据量的效果,以了解我们自我监督的多语言模型的质量。为了展示方法的可扩展性,我们培训具有200多种语言的模型,并在几个先前研究的语言上展示了对零资源翻译的高性能。我们希望我们的调查结果将成为踏脚石,以便为下一千种语言进行翻译。
translated by 谷歌翻译
我们提出了一种两阶段的培训方法,用于开发单个NMT模型,以翻译英语和英语的看不见的语言。对于第一阶段,我们将编码器模型初始化以鉴定XLM-R和Roberta的权重,然后对25种语言的平行数据进行多种语言微调。我们发现该模型可以推广到对看不见的语言的零击翻译。在第二阶段,我们利用这种概括能力从单语数据集生成合成的并行数据,然后用连续的反向翻译训练。最终模型扩展到了英语到许多方向,同时保持了多到英语的性能。我们称我们的方法为ecxtra(以英语为中心的跨语言(x)转移)。我们的方法依次利用辅助并行数据和单语言数据,并且在概念上很简单,仅在两个阶段都使用标准的跨熵目标。最终的ECXTRA模型对8种低资源语言的无监督NMT进行了评估,该语言为英语至哈萨克语(22.3> 10.4 bleu)以及其他15个翻译方向的竞争性能而获得了新的最先进。
translated by 谷歌翻译
This paper demonstrates that multilingual denoising pre-training produces significant performance gains across a wide variety of machine translation (MT) tasks. We present mBART -a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective . mBART is the first method for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. Pre-training a complete model allows it to be directly fine tuned for supervised (both sentence-level and document-level) and unsupervised machine translation, with no task-specific modifications. We demonstrate that adding mBART initialization produces performance gains in all but the highest-resource settings, including up to 12 BLEU points for low resource MT and over 5 BLEU points for many document-level and unsupervised models. We also show it also enables new types of transfer to language pairs with no bi-text or that were not in the pre-training corpus, and present extensive analysis of which factors contribute the most to effective pre-training.
translated by 谷歌翻译
语言模型预训练的最新进展利用大规模数据集创建多语言模型。但是,这些数据集中大多遗漏了低资源语言。这主要是因为网络上没有很好地表示口语,因此被排除在用于创建数据集的大规模爬网中。此外,这些模型的下游用户仅限于最初选择用于预训练的语言的选择。这项工作调查了如何最佳利用现有的预培训模型来为16种非洲语言创建低资源翻译系统。我们关注两个问题:1)如何将预训练的模型用于初始预培训中未包含的语言? 2)生成的翻译模型如何有效地转移到新域?为了回答这些问题,我们创建了一个新的非洲新闻语料库,涵盖16种语言,其中8种语言不属于任何现有评估数据集的一部分。我们证明,将两种语言转移到其他语言和其他领域的最有效策略是,以少量的高质量翻译数据微调大型预训练模型。
translated by 谷歌翻译
在本文中,我们分享了我们努力建立能够翻译一千多种语言的实用机器翻译(MT)系统的发现。我们在三个研究领域中描述了结果:(i)通过利用半监督预训练的语言识别和开发数据驱动的过滤技术来构建1500多种语言的清洁,网挖数据集; (ii)通过利用大规模的多语言模型来开发用于服务不足的语言的实用MT模型,该模型训练了有监督的并行数据,以使用100多种高资源语言和单语言数据集,以增加1000多种语言; (iii)研究这些语言的评估指标的局限性,并对我们MT模型的输出进行定性分析,突出显示了这些类型模型的几种频繁误差模式。我们希望我们的工作为旨在为当前研究的语言构建MT系统的从业者提供有用的见解,并突出显示可以补充Data-Sparse设置中大量多语言模型的弱点的研究方向。
translated by 谷歌翻译
机器翻译系统(MTS)是通过将文本或语音从一种语言转换为另一种语言的有效工具。在像印度这样的大型多语言环境中,对有效的翻译系统的需求变得显而易见,英语和一套印度语言(ILS)正式使用。与英语相反,由于语料库的不可用,IL仍然被视为低资源语言。为了解决不对称性质,多语言神经机器翻译(MNMT)系统会发展为在这个方向上的理想方法。在本文中,我们提出了一个MNMT系统,以解决与低资源语言翻译有关的问题。我们的模型包括两个MNMT系统,即用于英语印度(一对多),另一个用于指示英语(多一对多),其中包含15个语言对(30个翻译说明)的共享编码器码头。由于大多数IL对具有很少的平行语料库,因此不足以训练任何机器翻译模型。我们探索各种增强策略,以通过建议的模型提高整体翻译质量。最先进的变压器体系结构用于实现所提出的模型。大量数据的试验揭示了其优越性比常规模型的优势。此外,本文解决了语言关系的使用(在方言,脚本等方面),尤其是关于同一家族的高资源语言在提高低资源语言表现方面的作用。此外,实验结果还表明了ILS的倒退和域适应性的优势,以提高源和目标语言的翻译质量。使用所有这些关键方法,我们提出的模型在评估指标方面比基线模型更有效,即一组ILS的BLEU(双语评估研究)得分。
translated by 谷歌翻译
我们描述了JD Explore Academy对WMT 2022共享的一般翻译任务的提交。我们参加了所有高资源曲目和一条中型曲目,包括中文英语,德语英语,捷克语英语,俄语 - 英语和日语英语。我们通过扩大两个主要因素,即语言对和模型大小,即\ textbf {vega-mt}系统来推动以前的工作的极限 - 进行翻译的双向培训。至于语言对,我们将“双向”扩展到“多向”设置,涵盖所有参与语言,以利用跨语言的常识,并将其转移到下游双语任务中。至于型号尺寸,我们将变压器限制到拥有近47亿参数的极大模型,以完全增强我们VEGA-MT的模型容量。此外,我们采用数据增强策略,例如单语数据的循环翻译以及双语和单语数据的双向自我训练,以全面利用双语和单语言数据。为了使我们的Vega-MT适应通用域测试集,设计了概括调整。根据受约束系统的官方自动分数,根据图1所示的sacrebleu,我们在{zh-en(33.5),en-zh(49.7)(49.7),de-en(33.7)上获得了第一名-de(37.8),CS-EN(54.9),En-CS(41.4)和En-Ru(32.7)},在{ru-en(45.1)和Ja-en(25.6)}和第三名上的第二名和第三名在{en-ja(41.5)}上; W.R.T彗星,我们在{zh-en(45.1),en-zh(61.7),de-en(58.0),en-de(63.2),cs-en(74.7),ru-en(ru-en(ru-en)上,我们获得了第一名64.9),en-ru(69.6)和en-ja(65.1)},分别在{en-cs(95.3)和ja-en(40.6)}上的第二名。将发布模型,以通过GitHub和Omniforce平台来促进MT社区。
translated by 谷歌翻译
Multilingual machine translation models can benefit from synergy between different language pairs, but also suffer from interference. While there is a growing number of sophisticated methods that aim to eliminate interference, our understanding of interference as a phenomenon is still limited. This work identifies the main factors that contribute to interference in multilingual machine translation. Through systematic experimentation, we find that interference (or synergy) are primarily determined by model size, data size, and the proportion of each language pair within the total dataset. We observe that substantial interference occurs mainly when the model is very small with respect to the available training data, and that using standard transformer configurations with less than one billion parameters largely alleviates interference and promotes synergy. Moreover, we show that tuning the sampling temperature to control the proportion of each language pair in the data is key to balancing the amount of interference between low and high resource language pairs effectively, and can lead to superior performance overall.
translated by 谷歌翻译
Universal cross-lingual sentence embeddings map semantically similar cross-lingual sentences into a shared embedding space. Aligning cross-lingual sentence embeddings usually requires supervised cross-lingual parallel sentences. In this work, we propose mSimCSE, which extends SimCSE to multilingual settings and reveal that contrastive learning on English data can surprisingly learn high-quality universal cross-lingual sentence embeddings without any parallel data. In unsupervised and weakly supervised settings, mSimCSE significantly improves previous sentence embedding methods on cross-lingual retrieval and multilingual STS tasks. The performance of unsupervised mSimCSE is comparable to fully supervised methods in retrieving low-resource languages and multilingual STS. The performance can be further enhanced when cross-lingual NLI data is available. Our code is publicly available at https://github.com/yaushian/mSimCSE.
translated by 谷歌翻译
我们对真正低资源语言的神经机翻译(NMT)进行了实证研究,并提出了一个训练课程,适用于缺乏并行培训数据和计算资源的情况,反映了世界上大多数世界语言和研究人员的现实致力于这些语言。以前,已经向低资源语言储存了使用后翻译(BT)和自动编码(AE)任务的无监督NMT。我们证明利用可比的数据和代码切换作为弱监管,与BT和AE目标相结合,即使仅使用适度的计算资源,低资源语言也会显着改进。在这项工作中提出的培训课程实现了Bleu分数,可通过+12.2 Bleu为古吉拉特和+3.7 Bleu为哈萨克斯培训的监督NMT培训,展示了弱势监督的巨大监督态度资源语言。在受到监督数据的培训时,我们的培训课程达到了索马里数据集(索马里29.3的BLEU的最先进的结果)。我们还观察到增加更多时间和GPU来培训可以进一步提高性能,强调报告在MT研究中的报告资源使用的重要性。
translated by 谷歌翻译
最近在单语数据和机器翻译(MT)进行微调的预培训方面取得了成功,但尚不清楚如何最好地利用预先训练的模型来完成给定的MT任务。本文在微调MT上的预训练模型时研究了冻结参数的好处和缺点。我们专注于1)微调仅在英语单语言数据的BART上训练的模型。2)微调一个模型,该模型对25种语言的单语言数据进行了培训,Mbart。对于Bart,我们通过冻结大多数模型参数并添加额外的位置嵌入来获得最佳性能。对于MBART,我们将大多数语言对的天真微调的性能与编码器以及大多数解码器搭配。编码器的注意参数对于微调最重要。当将自己限制为越南人对英语的室外训练套装时,我们看到了基线的最大进步。
translated by 谷歌翻译
以前的工作主要侧重于改善NLU任务的交叉传输,具有多语言预用编码器(MPE),或提高与伯特的监督机器翻译的性能。然而,探索了,MPE是否可以有助于促进NMT模型的交叉传递性。在本文中,我们专注于NMT中的零射频转移任务。在此任务中,NMT模型培训,只有一个语言对的并行数据集和搁置架MPE,然后它直接测试在零拍语言对上。我们为此任务提出了Sixt,一个简单而有效的模型。 SIXT利用了两阶段培训计划利用MPE,并进一步改进了解离编码器和容量增强的解码器。使用此方法,SIMPT显着优于MBart,这是一个用于NMT的预磨削的多语言编码器解码器模型,平均改善了14个源语言的零拍摄的任何英语测试集上的7.1 BLEU。此外,培训计算成本和培训数据较少,我们的模型在15个任何英语测试组上实现了比Criss和M2M-100,两个强大的多语言NMT基线更好的性能。
translated by 谷歌翻译
只有在模型在大规模的多语言环境中培训的情况下,才有可能在无监督的机器翻译(UMT)上进行无监督的机器翻译(UMT),这意味着有能力的无监督翻译(例如尼泊尔或辛哈拉)的胜任的不受监督的翻译,例如尼泊尔或辛哈拉语。与高资源对应物混合。尽管如此,尽管高资源语言极大地帮助启动了目标低资源翻译任务,但它们之间的语言差异可能会阻碍他们的进一步改进。在这项工作中,我们提出了一个简单的完善程序,以将语言与预先训练的多语言UMT模型相关联,以仅关注目标低资源任务。我们的方法在完全无监督的翻译任务中实现了最新的尼泊尔,僧伽罗,古吉拉特语,拉脱维亚,爱沙尼亚和哈萨克的最新技术,分别为3.5、3.3、3.3、4.1、4.2、4.2和3.3。我们的代码库可从https://github.com/nxphi47/refine_unsup_multlingual_mt获得
translated by 谷歌翻译
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes an encoder, decoder and attention module, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for English→French and surpasses state-of-the-art results for English→German. Similarly, a single multilingual model surpasses state-of-the-art results for French→English and German→English on WMT'14 and WMT'15 benchmarks, respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.
translated by 谷歌翻译
本文介绍了我们提交给WMT21共享新闻翻译任务的受限轨道。我们专注于三个相对低的资源语言对孟加拉,从印地语,英语往返Hausa,以及来自Zulu的Xhosa。为了克服相对低行数据的限制,我们使用采用并行和单晶体数据的多任务目标训练多语言模型。此外,我们使用后退转换增强数据。我们还培养了一种双语模型,包括后退转换和知识蒸馏,然后使用序列到序列映射来组合两种模型。我们看到迄今为止英语和来自Hausa的Bleu Point的相对收益约为70%,以及与双语基线相比,孟加拉和从Zulu的孟加拉和从Zulu的相对改善约25%。
translated by 谷歌翻译
本报告介绍了在大型多语种计算机翻译中为WMT21共享任务的Microsoft的机器翻译系统。我们参加了所有三种评估轨道,包括大轨道和两个小轨道,前者是无约束的,后两者完全受约束。我们的模型提交到共享任务的初始化用deltalm \脚注{\ url {https://aka.ms/deltalm}},一个通用的预训练的多语言编码器 - 解码器模型,并相应地使用巨大的收集并行进行微调数据和允许的数据源根据轨道设置,以及应用逐步学习和迭代背翻译方法进一步提高性能。我们的最终提交在自动评估度量方面排名第一的三条轨道。
translated by 谷歌翻译
我们介绍Samanantar,是最大的公开可用的并行Corpora Collection,用于指示语言。该集合中的英语和11个上线语言之间总共包含4970万句对(来自两种语言系列)。具体而言,我们从现有的公共可用并行基层编译1240万句对,另外,从网络上挖掘3740万句对,导致4倍增加。我们通过组合许多语料库,工具和方法来挖掘网站的并行句子:(a)Web爬行单格式语料库,(b)文档OCR,用于从扫描的文档中提取句子,(c)用于对齐句子的多语言表示模型,以及(d)近似最近的邻居搜索搜索大量句子。人类评估新矿业的Corpora的样本验证了11种语言的高质量平行句子。此外,我们使用英语作为枢轴语言,从英式并行语料库中提取所有55个指示语言对之间的834百万句子对。我们培训了跨越Samanantar上所有这些语言的多语种NMT模型,这在公开可用的基准上表现出现有的模型和基准,例如弗洛雷斯,建立萨曼塔尔的效用。我们的数据和模型可在Https://indicnlp.ai4bharat.org/samanantar/上公开提供,我们希望他们能够帮助推进NMT和Multibingual NLP的研究。
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译