最先进的神经(RE)排名者是众所周知的渴望数据,鉴于缺乏英语以外的其他语言培训数据 - 使它们很少用于多语言和跨语性检索设置。因此,当前的方法通常是通过多语言编码器培训的英语数据和跨语言设置的通常转移排名者:它们通过对英语相关性判断的所有预审预周化的多语言变压器(例如MMT,例如多语言BERT)的所有参数微调所有参数。用目标语言部署它们。在这项工作中,我们表明了两种参数效率的跨语性转移方法,即稀疏的微调蒙版(SFTM)和适配器,允许更轻巧,更有效的零拍传输到多语言和跨语言检索任务。我们首先通过蒙版语言建模来训练语言适配器(或SFTM),然后在最上方训练检索(即重新固定)适配器(SFTM),同时将所有其他参数保持固定。在推断时,这种模块化设计使我们能够通过应用(或SFTM)与源语言数据一起训练的(RE)排名适配器(或SFTM)以及目标语言的语言适配器(或SFTM)。我们对CLEF-2003和HC4基准进行了大规模的评估,此外,作为另一个贡献,我们还用三种新语言进行查询:吉尔吉斯,Uyghur和Turkish。所提出的参数效率方法的表现优于标准零射击传输,并具有完整的MMT微调,同时是模块化和减少训练时间。对于低资源语言,收益特别明显,我们的方法也大大优于基于竞争的机器翻译的排名。
translated by 谷歌翻译
在这项工作中,我们提出了一个系统的实证研究,专注于最先进的多语言编码器在跨越多种不同语言对的交叉语言文档和句子检索任务的适用性。我们首先将这些模型视为多语言文本编码器,并在无监督的ad-hoc句子和文档级CLIR中基准性能。与监督语言理解相比,我们的结果表明,对于无监督的文档级CLIR - 一个没有针对IR特定的微调 - 预训练的多语言编码器的相关性判断,平均未能基于CLWE显着优于早期模型。对于句子级检索,我们确实获得了最先进的性能:然而,通过多语言编码器来满足高峰分数,这些编码器已经进一步专注于监督的时尚,以便句子理解任务,而不是使用他们的香草'现货'变体。在这些结果之后,我们介绍了文档级CLIR的本地化相关性匹配,在那里我们独立地对文件部分进行了查询。在第二部分中,我们评估了在一系列零拍语言和域转移CLIR实验中的英语相关数据中进行微调的微调编码器精细调整的微调我们的结果表明,监督重新排名很少提高多语言变压器作为无监督的基数。最后,只有在域名对比度微调(即,同一域名,只有语言转移),我们设法提高排名质量。我们在目标语言中单次检索的交叉定向检索结果和结果(零拍摄)交叉传输之间的显着实证差异,这指出了在单机数据上训练的检索模型的“单声道过度装备”。
translated by 谷歌翻译
虽然审慎的语言模型(PLM)主要用作通用文本编码器,可以对各种下游任务进行微调,但最近的工作表明它们也可以重新连接以产生高质量的单词表示(即静态单词)嵌入)并在类型级词汇任务中产生良好的性能。虽然现有的工作主要集中在单语和双语环境中PLM的词汇专业化,但在这项工作中,我们将大规模多语言变压器(例如MMTS,例如Mbert或XLM-R)公开,以此为大规模的多语言词法知识,并利用Babelnet作为易于获得的丰富来源。多语言和跨语性类型级词汇知识。具体来说,我们利用Babelnet的多语言合成器来创建$ 50 $语言的同义词对,然后对MMTS(Mbert和XLM-R)进行对比目标指导的词汇专业化程序。我们表明,如此庞大的多语言词汇专业化为两项标准的跨语性词汇任务,双语词典感应和跨语性单词相似性以及跨语性句子检索带来了巨大的收益。至关重要的是,我们观察到在专业化中看不见的语言的收益,表明多语言词汇专业化使得概括无词法约束。在一系列随后的受控实验中,我们证明了MMT对专业化语言中单词表示的预处理质量对性能的影响要比一组约束集的语言多样性更大。令人鼓舞的是,这表明涉及低资源语言的词汇任务从资源丰富的语言的词汇知识中受益最大,通常更多。
translated by 谷歌翻译
A popular approach to creating a zero-shot cross-language retrieval model is to substitute a monolingual pretrained language model in the retrieval model with a multilingual pretrained language model such as Multilingual BERT. This multilingual model is fined-tuned to the retrieval task with monolingual data such as English MS MARCO using the same training recipe as the monolingual retrieval model used. However, such transferred models suffer from mismatches in the languages of the input text during training and inference. In this work, we propose transferring monolingual retrieval models using adapters, a parameter-efficient component for a transformer network. By adding adapters pretrained on language tasks for a specific language with task-specific adapters, prior work has shown that the adapter-enhanced models perform better than fine-tuning the entire model when transferring across languages in various NLP tasks. By constructing dense retrieval models with adapters, we show that models trained with monolingual data are more effective than fine-tuning the entire model when transferring to a Cross Language Information Retrieval (CLIR) setting. However, we found that the prior suggestion of replacing the language adapters to match the target language at inference time is suboptimal for dense retrieval models. We provide an in-depth analysis of this discrepancy between other cross-language NLP tasks and CLIR.
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
MARCO排名数据集已广泛用于培训IR任务的深度学习模型,在不同的零射击方案上实现了相当大的效果。但是,这种类型的资源是英语以外的语言的稀缺。在这项工作中,我们呈现MMARCO,MS Marco段落的多语言版本,该数据集包括使用机器翻译创建的13种语言。我们通过微调单语和多语言重新排名模型以及此数据集的密集多语言模型进行了评估。实验结果表明,在我们翻译的数据集上微调微调的多语言模型可以单独对原始英文版的模型进行微调的卓越效果。我们蒸馏的多语言RE-RANKER与非蒸馏模型具有竞争力,而参数较少的5.4倍。最后,我们展现了翻译质量和检索效果之间的正相关性,提供了证据,即翻译方法的改进可能导致多语言信息检索的改进。翻译的数据集和微调模型可在https://github.com/unicamp-dl/mmarco.git上获得。
translated by 谷歌翻译
一种有效的横向传输方法是在一种语言中微调在监督数据集上的双语或多语言模型,并以零拍方式在另一种语言上进行评估。在培训时间或推理时间翻译例子也是可行的替代方案。然而,存在与文献中很少有关的这些方法相关的成本。在这项工作中,我们在其有效性(例如,准确性),开发和部署成本方面分析交叉语言方法,以及推理时间的延迟。我们的三个任务的实验表明最好的交叉方法是高度任务依赖性的。最后,通过结合零射和翻译方法,我们在这项工作中使用的三个数据集中实现了最先进的。基于这些结果,我们对目标语言手动标记的培训数据有所了解。代码和翻译的数据集可在https://github.com/unicamp-dl/cross-lingsual-analysis上获得
translated by 谷歌翻译
多语言预训练的语言模型(PLM)在高资源和低资源语言的下游任务上表现出令人印象深刻的表现。但是,在预培训期间,尤其是非洲语言中,看不见的语言仍然有很大的表现。适应新语言的最有效方法之一是\ textit {语言自适应微调}(LAFT) - 使用预训练目标对单语言的多语言PLM进行微调。但是,适应目标语言会单独使用大磁盘空间,并限制了由此产生的模型的跨语言转移能力,因为它们已经专门用于单语言。在本文中,我们对17种最重要的非洲语言和其他三种在非洲大陆上广泛使用的高资源语言对17种最具资源的非洲语言进行\ Textit {多语言自适应微调},以鼓励跨语性转移学习。为了进一步专注于多语言PLM,我们从嵌入式层中删除了与MAFT之前的非非洲写作脚本相对应的词汇令牌,从而将模型大小降低了约50%。我们对两个多语言PLM(Afriberta和XLM-R)和三个NLP任务(NER,新闻主题分类和情感分类)的评估表明,我们的方法可以在单个语言上应用LAFT,同时需要较小的磁盘空间。此外,我们表明我们的适应性PLM还提高了参数有效微调方法的零击跨语性转移能力。
translated by 谷歌翻译
The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at \url{https://github.com/bigscience-workshop/multilingual-modeling/}.
translated by 谷歌翻译
以前的工作主要侧重于改善NLU任务的交叉传输,具有多语言预用编码器(MPE),或提高与伯特的监督机器翻译的性能。然而,探索了,MPE是否可以有助于促进NMT模型的交叉传递性。在本文中,我们专注于NMT中的零射频转移任务。在此任务中,NMT模型培训,只有一个语言对的并行数据集和搁置架MPE,然后它直接测试在零拍语言对上。我们为此任务提出了Sixt,一个简单而有效的模型。 SIXT利用了两阶段培训计划利用MPE,并进一步改进了解离编码器和容量增强的解码器。使用此方法,SIMPT显着优于MBart,这是一个用于NMT的预磨削的多语言编码器解码器模型,平均改善了14个源语言的零拍摄的任何英语测试集上的7.1 BLEU。此外,培训计算成本和培训数据较少,我们的模型在15个任何英语测试组上实现了比Criss和M2M-100,两个强大的多语言NMT基线更好的性能。
translated by 谷歌翻译
可靠的评估基准是为了可复制性和全面性而设计的,在机器学习方面取得了进步。但是,由于缺乏多语言基准,视觉和语言研究主要集中在英语任务上。为了填补这一空白,我们介绍了图像的语言理解评估基准。 Iglue通过汇总已有的数据集并创建新的数据来汇集 - 视觉问题回答,跨模式检索,扎根的推理以及跨20种不同语言的扎根成本。我们的基准测试能够评估多语言多模型用于转移学习的模型,不仅在零弹位设置中,而且还以新定义的少数图学习设置。根据对可用最新模型的评估,我们发现翻译测试转移优于零弹性转移,并且对于许多任务而言,很难利用射击的学习。此外,下游性能部分用可用的未标记文本数据进行预处理来解释,并且仅通过目标源语言的类型学距离而微弱。我们希望通过向社区释放基准来鼓励该领域的未来研究工作。
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
两个关键假设塑造了排名检索的通常视图:(1)搜索者可以为他们希望看到的文档中的疑问选择单词,并且(2)排名检索的文档就足以,因为搜索者将足够就足够了能够认识到他们希望找到的那些。当要搜索的文档处于搜索者未知的语言时,既不是真的。在这种情况下,需要跨语言信息检索(CLIR)。本章审查了艺术技术的交流信息检索,并概述了一些开放的研究问题。
translated by 谷歌翻译
我们介绍了使用多级知识蒸馏(KD)训练的新的交叉语言信息检索(CLIR)模型。老师和学生是异构的系统 - 前者是依赖于机器翻译和单晶IR的管道,而后者执行单个CLIR操作。我们表明学生可以通过优化两个相应的KD目标来学习多语言表示和CLIR。使用英语唯一的检索器的学习多语言表示是使用一种新颖的跨语言对齐算法来实现,使得贪婪地重新定位教师令牌进行对齐。XOR-TYDI基准测试的评估表明,所提出的模型比具有交叉语言标记的IR数据的微调现有方法更有效,精度为25.4召回@ 5kt。
translated by 谷歌翻译
我们考虑使用最新的MultieRlex数据集中考虑法律主题分类中的零射击跨语性转移。由于原始数据集包含并行文档,这对于零拍传输不现实是不现实的,因此我们开发了一个没有并行文档的数据集的新版本。我们使用它来表明,基于翻译的方法非常优于多绘制预训练的模型,这是多曲线的最佳先前的零弹性传输方法。我们还开发了一种双语的教师零摄像转移方法,该方法利用了目标语言的其他未标记文档,并且比直接在标记的目标语言文档上进行微调的模型更好。
translated by 谷歌翻译
临床表型可以从患者记录中自动提取临床状况,这可能对全球医生和诊所有益。但是,当前的最新模型主要适用于用英语编写的临床笔记。因此,我们研究了跨语化知识转移策略,以针对不使用英语并且有少量可用数据的诊所执行此任务。我们评估了希腊和西班牙诊所的这些策略,利用来自心脏病学,肿瘤学和ICU等不同临床领域的临床笔记。我们的结果揭示了两种策略,这些策略优于最先进的方法:基于翻译的方法,结合了域的编码器和跨语性编码器以及适配器。我们发现,这些策略在对稀有表型进行分类方面表现特别好,我们建议在哪种情况下更喜欢哪种方法。我们的结果表明,使用多语言数据总体可以改善临床表型模型,并可以补偿数据稀疏性。
translated by 谷歌翻译
GPT-3等大型自回归语言模型是几秒钟的学习者,可以在没有微调的情况下执行各种语言任务。虽然已知这些模型能够共同代表许多不同的语言,但他们的培训数据由英语主导,可能限制了它们的交叉概括。在这项工作中,我们在覆盖多种语言的平衡语料库上培训多语言自回归语言模型,并在广泛的任务中研究他们几乎没有零点的学习能力。我们最大的模型,具有75亿参数,在20多种代表语言中,在几种代表语言中,在几种代表性语言中,在几种代表性语言中,在多语言型号推理中表现出可比大小的GPT-3(在0次设置和0次拍摄设置中的绝对精度改善+ 7.4% 4-拍摄设置中的9.4%)和自然语言推理(每次拍摄和4次设置中的每一个+ 5.4%)。在Flores-101机器翻译基准测试中,我们的模型优于GPT-3在182个翻译方向上有32个培训例子,同时超过45个方向的官方监督基线。我们介绍了模型成功和失败的位置的详细分析,特别是它尤其显示在某些任务中实现交叉语境的内容学习,而仍然存在改善表面的鲁棒性和适应没有a的任务的余地自然冻结形式。最后,我们评估我们在仇恨语音检测中以五种语言的仇恨语音检测的模型,并发现它具有与可比大小的GPT-3模型类似的限制。
translated by 谷歌翻译
通过多种语言对培训的多语言神经机器翻译(MNMT),由于模型参数的较少和较低的培训成本,通过在多种语言之间共享知识,引起了人们的关注。尽管如此,由于不同翻译方向之间的负面干扰,尤其是在高资源语言上,因此,多语言培训在共享参数中受到语言干扰退化的困扰。在本文中,我们提出了具有高资源语言特定培训(HLT-MT)的多语言翻译模型,以减轻负面干扰,该干扰采用了具有特定于语言的选择机制的两阶段培训。具体而言,我们首先仅使用高资源对训练多语言模型,然后选择解码器顶部的语言特定模块,以增强高资源方向的翻译质量。接下来,对所有可用语料库进行进一步培训,将知识从高资源语言(HRLS)转移到低资源语言(LRLS)。实验结果表明,HLT-MT在WMT-10和Opus-100基准测试上的表现优于各种强基础。此外,分析实验验证了我们方法在减轻多语言训练中负面干扰方面的有效性。
translated by 谷歌翻译
互动和非交互式模型是基于向量的交叉信息检索(V-CLIR)中的两个De-Facto标准框架,其分别以同步和异步方式嵌入查询和文档。从检索准确性和计算效率的角度来看,每个型号都有自己的优越性和缺点。在本文中,我们提出了一种新颖的框架来利用这两个范式的优势。具体地,我们介绍了半交互式机制,它在非交互式架构上构建了我们的模型,但将每个文档与其相关的多语言查询一起编码。因此,可以更好地学习交互式模型的交叉特征。此外,我们通过重用其单词嵌入和采用知识蒸馏来进一步将知识从训练有素的互动模型转移到我们的。我们的模型是从多语言预先训练的语言模型M-BERT初始化的,并在从维基百科和从现实世界搜索引擎收集的内部数据集进行评估。广泛的分析表明,我们的方法在保持计算效率的同时显着提高了检索准确性。
translated by 谷歌翻译
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
translated by 谷歌翻译