We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
稀疏数据的恢复是机器学习和信号处理中许多应用的核心。虽然可以使用$ \ ell_1 $ -regularization在套索估算器中使用此类问题,但在基础上,通常需要专用算法来解决大型实例的相应高维非平滑优化。迭代地重新重复的最小二乘(IRLS)是一种广泛使用的算法,其出于其优异的数值性能。然而,虽然现有理论能够保证该算法的收敛到最小化器,但它不提供全局收敛速度。在本文中,我们证明了IRLS的变型以全局线性速率收敛到稀疏解决方案,即,如果测量结果满足通常的空空间属性假设,则立即发生线性误差。我们通过数值实验支持我们的理论,表明我们的线性速率捕获了正确的维度依赖性。我们预计我们的理论调查结果将导致IRLS算法的许多其他用例的新见解,例如在低级矩阵恢复中。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M . Can we complete the matrix and recover the entries that we have not seen?We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
最近以来,在理解与overparameterized模型非凸损失基于梯度的方法收敛性和泛化显著的理论进展。尽管如此,优化和推广,尤其是小的随机初始化的关键作用的许多方面都没有完全理解。在本文中,我们迈出玄机通过证明小的随机初始化这个角色的步骤,然后通过梯度下降的行为类似于流行谱方法的几个迭代。我们还表明,从小型随机初始化,这可证明是用于overparameterized车型更加突出这种隐含的光谱偏差,也使梯度下降迭代在一个特定的轨迹走向,不仅是全局最优的,但也很好期广义的解决方案。具体而言,我们专注于通过天然非凸制剂重构从几个测量值的低秩矩阵的问题。在该设置中,我们表明,从小的随机初始化的梯度下降迭代的轨迹可以近似分解为三个阶段:(Ⅰ)的光谱或对准阶段,其中,我们表明,该迭代具有一个隐含的光谱偏置类似于频谱初始化允许我们表明,在该阶段中进行迭代,并且下面的低秩矩阵的列空间被充分对准的端部,(II)一鞍回避/细化阶段,我们表明,该梯度的轨迹从迭代移动离开某些简并鞍点,和(III)的本地细化阶段,其中,我们表明,避免了鞍座后的迭代快速收敛到底层低秩矩阵。底层我们的分析是,可能有超出低等级的重建计算问题影响overparameterized非凸优化方案的分析见解。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
社区检测和正交组同步是科学和工程中各种重要应用的基本问题。在这项工作中,我们考虑了社区检测和正交组同步的联合问题,旨在恢复社区并同时执行同步。为此,我们提出了一种简单的算法,该算法由频谱分解步骤组成,然后是彼此枢转的QR分解(CPQR)。所提出的算法与数据点数线性有效且缩放。我们还利用最近开发的“休闲一淘汰”技术来建立近乎最佳保证,以确切地恢复集群成员资格,并稳定地恢复正交变换。数值实验证明了我们算法的效率和功效,并确认了我们的理论表征。
translated by 谷歌翻译
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
在这项工作中,我们估计具有高概率的张量的随机选择元素的数量,保证了黎曼梯度下降的局部收敛性,以便张力列车完成。基于展开奇异值的谐波平均值,我们从正交投影的正交投影推导出一个新的界限,并引入张力列车的核心相干概念。我们还将结果扩展到张力列车完成与侧面信息,并获得相应的本地收敛保证。
translated by 谷歌翻译
我们介绍和分析了多元奇异频谱分析(MSSA)的变体,这是一种流行的时间序列方法,用于启用和预测多元时间序列。在我们介绍的时空因素模型下,给定$ n $时间序列和$ t $观测时间序列,我们为插补和样本外预测均有效地扩展为$ 1 / \ sqrt,为预测和样本预测有效地缩放均值{\ min(n,t)t} $。这是一个改进:(i)$ 1 /\ sqrt {t} $ SSA的错误缩放,MSSA限制对单变量时间序列; (ii)$ 1/\ min(n,t)$对于不利用数据中时间结构的矩阵估计方法的错误缩放。我们引入的时空模型包括:谐波,多项式,可区分的周期函数和持有人连续函数的任何有限总和和产物。在时空因素模型下,我们的样本外预测结果可能对在线学习具有独立的兴趣。从经验上讲,在基准数据集上,我们的MSSA变体通过最先进的神经网络时间序列方法(例如,DEEPAR,LSTM)竞争性能,并且明显优于诸如矢量自动化(VAR)之类的经典方法。最后,我们提出了MSSA的扩展:(i)估计时间序列的时变差异的变体; (ii)一种张量变体,对于$ n $和$ t $的某些制度具有更好的样本复杂性。
translated by 谷歌翻译