我们介绍和分析了多元奇异频谱分析(MSSA)的变体,这是一种流行的时间序列方法,用于启用和预测多元时间序列。在我们介绍的时空因素模型下,给定$ n $时间序列和$ t $观测时间序列,我们为插补和样本外预测均有效地扩展为$ 1 / \ sqrt,为预测和样本预测有效地缩放均值{\ min(n,t)t} $。这是一个改进:(i)$ 1 /\ sqrt {t} $ SSA的错误缩放,MSSA限制对单变量时间序列; (ii)$ 1/\ min(n,t)$对于不利用数据中时间结构的矩阵估计方法的错误缩放。我们引入的时空模型包括:谐波,多项式,可区分的周期函数和持有人连续函数的任何有限总和和产物。在时空因素模型下,我们的样本外预测结果可能对在线学习具有独立的兴趣。从经验上讲,在基准数据集上,我们的MSSA变体通过最先进的神经网络时间序列方法(例如,DEEPAR,LSTM)竞争性能,并且明显优于诸如矢量自动化(VAR)之类的经典方法。最后,我们提出了MSSA的扩展:(i)估计时间序列的时变差异的变体; (ii)一种张量变体,对于$ n $和$ t $的某些制度具有更好的样本复杂性。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
我们在具有固定设计的高维错误设置中分析主组件回归(PCR)。在适当的条件下,我们表明PCR始终以最小$ \ ell_2 $ -norm识别唯一模型,并且是最小的最佳模型。这些结果使我们能够建立非质子化的样本外预测,以确保提高最著名的速率。在我们的分析中,我们在样本外协变量之间引入了天然的线性代数条件,这使我们能够避免分布假设。我们的模拟说明了即使在协变量转移的情况下,这种条件对于概括的重要性。作为副产品,我们的结果还导致了合成控制文献的新结果,这是政策评估的主要方法。特别是,我们的minimax结果表明,在众多变体中,基于PCR的方法具有吸引力。据我们所知,我们对固定设计设置的预测保证在高维错误和合成控制文献中都是难以捉摸的。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
即使是最精确的经济数据集也具有嘈杂,丢失,离散化或私有化的变量。实证研究的标准工作流程涉及数据清理,然后是数据分析,通常忽略数据清洁的偏差和方差后果。我们制定了具有损坏数据的因果推理的半造型模型,以包括数据清洁和数据分析。我们提出了一种新的数据清洁,估计和推理的新的端到端程序,以及数据清洁调整的置信区间。通过有限的示例参数,我们证明了因果关系参数的估算器的一致性,高斯近似和半游戏效率。 Gaussian近似的速率为N ^ { - 1/2} $,如平均治疗效果,如平均治疗效果,并且优雅地为当地参数劣化,例如特定人口统计的异构治疗效果。我们的关键假设是真正的协变量是较低的等级。在我们的分析中,我们为矩阵完成,统计学习和半统计统计提供了非对症的理论贡献。我们验证了数据清洁调整的置信区间隔的覆盖范围校准,以类似于2020年美国人口普查中实施的差异隐私。
translated by 谷歌翻译
网络数据通常在各种应用程序中收集,代表感兴趣的功能之间直接测量或统计上推断的连接。在越来越多的域中,这些网络会随着时间的流逝而收集,例如不同日子或多个主题之间的社交媒体平台用户之间的交互,例如在大脑连接性的多主体研究中。在分析多个大型网络时,降低降低技术通常用于将网络嵌入更易于处理的低维空间中。为此,我们通过专门的张量分解来开发用于网络集合的主组件分析(PCA)的框架,我们将半对称性张量PCA或SS-TPCA术语。我们得出计算有效的算法来计算我们提出的SS-TPCA分解,并在标准的低级别信号加噪声模型下建立方法的统计效率。值得注意的是,我们表明SS-TPCA具有与经典矩阵PCA相同的估计精度,并且与网络中顶点数的平方根成正比,而不是预期的边缘数。我们的框架继承了古典PCA的许多优势,适用于广泛的无监督学习任务,包括识别主要网络,隔离有意义的更改点或外出观察,以及表征最不同边缘的“可变性网络”。最后,我们证明了我们的提案对模拟数据的有效性以及经验法律研究的示例。用于建立我们主要一致性结果的技术令人惊讶地简单明了,可能会在其他各种网络分析问题中找到使用。
translated by 谷歌翻译
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M . Can we complete the matrix and recover the entries that we have not seen?We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
作为一种特殊的无限级矢量自回旋(VAR)模型,矢量自回归移动平均值(VARMA)模型比广泛使用的有限级var模型可以捕获更丰富的时间模式。然而,长期以来,其实用性一直受到其不可识别性,计算疾病性和解释相对难度的阻碍。本文介绍了一种新颖的无限级VAR模型,该模型不仅避免了VARMA模型的缺点,而且继承了其有利的时间模式。作为另一个有吸引力的特征,可以单独解释该模型的时间和横截面依赖性结构,因为它们的特征是不同的参数集。对于高维时间序列,这种分离激发了我们对确定横截面依赖性的参数施加稀疏性。结果,可以在不牺牲任何时间信息的情况下实现更高的统计效率和可解释性。我们为提出的模型引入了一个$ \ ell_1 $调查估计量,并得出相应的非反应误差边界。开发了有效的块坐标下降算法和一致的模型顺序选择方法。拟议方法的优点得到了模拟研究和现实世界的宏观经济数据分析的支持。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译
In this paper, we study the trace regression when a matrix of parameters B* is estimated via the convex relaxation of a rank-regularized regression or via regularized non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on the rank, coherence, and spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove the restricted strong convexity of the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the regularization parameter to be above a certain theory-inspired threshold that depends on observation noise that may be unknown in practice. Next, we extend the error bounds to cases where the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators (Kale et al., 2011; Kumar et al., 2013; Abou-Moustafa and Szepesvari, 2017) do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a near-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
低秩矩阵恢复的现有结果在很大程度上专注于二次损失,这享有有利的性质,例如限制强的强凸/平滑度(RSC / RSM)以及在所有低等级矩阵上的良好调节。然而,许多有趣的问题涉及更一般,非二次损失,这不满足这些属性。对于这些问题,标准的非耦合方法,例如秩约为秩约为预定的梯度下降(A.K.A.迭代硬阈值)和毛刺蒙特罗分解可能具有差的经验性能,并且没有令人满意的理论保证了这些算法的全球和快速收敛。在本文中,我们表明,具有非二次损失的可证实低级恢复中的关键组成部分是规律性投影oracle。该Oracle限制在适当的界限集中迭代到低级矩阵,损耗功能在其上表现良好并且满足一组近似RSC / RSM条件。因此,我们分析配备有这样的甲骨文的(平均)投影的梯度方法,并证明它在全球和线性地收敛。我们的结果适用于广泛的非二次低级估计问题,包括一个比特矩阵感测/完成,个性化排名聚集,以及具有等级约束的更广泛的广义线性模型。
translated by 谷歌翻译
我们考虑通过流算法从单个轨迹估计线性时间不变(LTI)动态系统的问题,这在包括增强学习(RL)和时间序列分析的若干应用中遇到。虽然LTI系统估计问题在{\ em离线}设置中进行了很好地研究,但实际上重要的流媒体/在线设置很少受到关注。如随机梯度下降(SGD)等标准流动方法不太可能起作用,因为流点可以高度相关。在这项工作中,我们提出了一种新颖的流媒体算法,SGD具有反向体验的重播($ \ MATHSF {SGD} - \ MATHSF {RER),这是由RL文献中流行的体验重播(ER)技术的启发。 $ \ mathsf {sgd} - \ mathsf {rer} $划分为小缓冲区,并在存储在单个缓冲区中的数据后向后运行SGD。我们表明该算法精确地解构了依赖结构,并获得了从理论上最佳保证的信息,用于参数误差和预测误差。因此,我们提供了我们的第一至最佳的知识 - 最佳的SGD风格算法,用于使用一阶Oracle的线性系统识别的经典问题。此外,$ \ mathsf {sgd} - \ mathsf {rer} $可以应用于具有已知稀疏模式和非线性动态系统的稀疏LTI识别的更多常规设置。我们的工作表明,数据依赖性结构的知识可以帮助我们在统计上和计算上的算法设计中,这些算法可以“去相关”流样本。
translated by 谷歌翻译