稀疏数据的恢复是机器学习和信号处理中许多应用的核心。虽然可以使用$ \ ell_1 $ -regularization在套索估算器中使用此类问题,但在基础上,通常需要专用算法来解决大型实例的相应高维非平滑优化。迭代地重新重复的最小二乘(IRLS)是一种广泛使用的算法,其出于其优异的数值性能。然而,虽然现有理论能够保证该算法的收敛到最小化器,但它不提供全局收敛速度。在本文中,我们证明了IRLS的变型以全局线性速率收敛到稀疏解决方案,即,如果测量结果满足通常的空空间属性假设,则立即发生线性误差。我们通过数值实验支持我们的理论,表明我们的线性速率捕获了正确的维度依赖性。我们预计我们的理论调查结果将导致IRLS算法的许多其他用例的新见解,例如在低级矩阵恢复中。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
在深度学习中,常见的是神经网络,即使用比训练样本更多的参数。非常令人惊讶地训练神经网络(随机)梯度下降导致概括得很好的模型,而古典统计会提出过度装备。为了了解这种隐含偏差现象,我们研究了自己感兴趣的稀疏恢复(压缩感测)的特殊情况。更确切地说,为了重建来自未确定的线性测量的矢量,我们引入了相应的过正常的方形损耗功能,其中要重建的载体深深地分解成几个载体。我们表明,在测量矩阵上的一个非常温和的假设下,用于过次分辨率的损耗功能的香草梯度流量会聚到最小$ \ ell_1 $ -norm的解决方案。后者众所周知,可以促进稀疏解决方案。作为副产品,我们的结果显着提高了先前作品中压缩感应的样本复杂性。该理论准确地预测数值实验中的回收率。对于证明,我们介绍了{\ texit {solution entopy}}的概念,它绕过了非凸起引起的障碍,并且应该是独立的兴趣。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们考虑凸优化问题,这些问题被广泛用作低级基质恢复问题的凸松弛。特别是,在几个重要问题(例如相位检索和鲁棒PCA)中,在许多情况下的基本假设是最佳解决方案是排名一列。在本文中,我们考虑了目标上的简单自然的条件,以使这些放松的最佳解决方案确实是独特的,并且是一个排名。主要是,我们表明,在这种情况下,使用线路搜索的标准Frank-Wolfe方法(即,没有任何参数调整),该方法仅需要单个排名一级的SVD计算,可以找到$ \ epsilon $ - 仅在$ o(\ log {1/\ epsilon})$迭代(而不是以前最著名的$ o(1/\ epsilon)$)中的近似解决方案,尽管目的不是强烈凸。我们考虑了基本方法的几种变体,具有改善的复杂性,以及由强大的PCA促进的扩展,最后是对非平滑问题的扩展。
translated by 谷歌翻译
最近以来,在理解与overparameterized模型非凸损失基于梯度的方法收敛性和泛化显著的理论进展。尽管如此,优化和推广,尤其是小的随机初始化的关键作用的许多方面都没有完全理解。在本文中,我们迈出玄机通过证明小的随机初始化这个角色的步骤,然后通过梯度下降的行为类似于流行谱方法的几个迭代。我们还表明,从小型随机初始化,这可证明是用于overparameterized车型更加突出这种隐含的光谱偏差,也使梯度下降迭代在一个特定的轨迹走向,不仅是全局最优的,但也很好期广义的解决方案。具体而言,我们专注于通过天然非凸制剂重构从几个测量值的低秩矩阵的问题。在该设置中,我们表明,从小的随机初始化的梯度下降迭代的轨迹可以近似分解为三个阶段:(Ⅰ)的光谱或对准阶段,其中,我们表明,该迭代具有一个隐含的光谱偏置类似于频谱初始化允许我们表明,在该阶段中进行迭代,并且下面的低秩矩阵的列空间被充分对准的端部,(II)一鞍回避/细化阶段,我们表明,该梯度的轨迹从迭代移动离开某些简并鞍点,和(III)的本地细化阶段,其中,我们表明,避免了鞍座后的迭代快速收敛到底层低秩矩阵。底层我们的分析是,可能有超出低等级的重建计算问题影响overparameterized非凸优化方案的分析见解。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
本文主要侧重于计算向量的欧几里德投影到$ \ ell_ {p} $ ball,其中$ p \ in(0,1)$。这种问题是统计机器学习中的核心构建块和信号处理任务,因为它促进了稀疏性的能力。但是,用于查找投影的有效数值算法仍然不可用,特别是在大规模优化中。为满足这一挑战,我们首先推出了这个问题的一流必备的最优性条件。基于该表征,我们通过求解一系列投影来制定一种用于计算静止点的新颖性方法,以在重新重量$ \ ell_ {1} $ - 球上。这种方法实际上是简单的实现和计算效率。此外,所提出的算法显示在温和条件下唯一会聚,并且具有最坏情况$ O(1 / \ SQRT {k})$收敛速率。数值实验证明了我们所提出的算法的效率。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
我们考虑最小化高维目标函数的问题,该功能可以包括正则化术语,使用(可能的噪声)评估该功能。这种优化也称为无衍生,零阶或黑匣子优化。我们提出了一个新的$ \ textbf {z} $ feroth - $ \ textbf {o} $ rder $ \ textbf {r} $ ptimization方法,称为zoro。当潜在的梯度大致稀疏时,Zoro需要很少的客观函数评估,以获得降低目标函数的新迭代。我们通过自适应,随机梯度估计器实现这一点,然后是不精确的近端梯度方案。在一个新颖的大致稀疏梯度假设和各种不同的凸面设置下,我们显示了zoro的(理论和实证)收敛速率仅对对数依赖于问题尺寸。数值实验表明,Zoro在合成和实际数据集中优于具有相似假设的现有方法。
translated by 谷歌翻译
本文提出了弗兰克 - 沃尔夫(FW)的新变种​​,称为$ k $ fw。标准FW遭受缓慢的收敛性:迭代通常是Zig-zag作为更新方向振荡约束集的极端点。新变种,$ k $ fw,通过在每次迭代中使用两个更强的子问题oracelles克服了这个问题。第一个是$ k $线性优化Oracle($ k $ loo),计算$ k $最新的更新方向(而不是一个)。第二个是$ k $方向搜索($ k $ ds),最大限度地减少由$ k $最新更新方向和之前迭代表示的约束组的目标。当问题解决方案承认稀疏表示时,奥克斯都易于计算,而且$ k $ FW会迅速收敛,以便平滑凸起目标和几个有趣的约束集:$ k $ fw实现有限$ \ frac {4l_f ^ 3d ^} { \ Gamma \ Delta ^ 2} $融合在多台和集团规范球上,以及光谱和核规范球上的线性收敛。数值实验验证了$ k $ fw的有效性,并展示了现有方法的数量级加速。
translated by 谷歌翻译
低秩矩阵恢复的现有结果在很大程度上专注于二次损失,这享有有利的性质,例如限制强的强凸/平滑度(RSC / RSM)以及在所有低等级矩阵上的良好调节。然而,许多有趣的问题涉及更一般,非二次损失,这不满足这些属性。对于这些问题,标准的非耦合方法,例如秩约为秩约为预定的梯度下降(A.K.A.迭代硬阈值)和毛刺蒙特罗分解可能具有差的经验性能,并且没有令人满意的理论保证了这些算法的全球和快速收敛。在本文中,我们表明,具有非二次损失的可证实低级恢复中的关键组成部分是规律性投影oracle。该Oracle限制在适当的界限集中迭代到低级矩阵,损耗功能在其上表现良好并且满足一组近似RSC / RSM条件。因此,我们分析配备有这样的甲骨文的(平均)投影的梯度方法,并证明它在全球和线性地收敛。我们的结果适用于广泛的非二次低级估计问题,包括一个比特矩阵感测/完成,个性化排名聚集,以及具有等级约束的更广泛的广义线性模型。
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译