深层隐式功能在各种3D计算机视觉任务中显示出显着的形状建模能力。一个缺点是,他们很难将3D形状表示为多个部分。当前的解决方案学习了各种原语,并直接在空间空间中融合了原语,这些原始物仍难以准确近似3D形状。为了解决这个问题,我们引入了一种新颖的隐式表示,以将单个3D形状表示为潜在空间中的一组零件,以高度准确和可解释的形状建模。我们在这里的洞察力是,在潜在空间中,零件学习和零件混合都比在空间空间中容易得多。我们将我们的方法命名为潜在分区隐式(LPI),因为它可以将全局形状建模施放到多个局部零件建模中,从而将全局形状统一分开。 LPI使用表面代码表示形状作为签名距离函数(SDF)。每个表面代码都是一个潜在代码,代表中心位于表面上的部分,这使我们能够灵活采用形状的内在属性或其他表面属性。最终,LPI可以重建形状和形状上的部分,它们都是合理的网格。 LPI是一种多级表示,可以在训练后将形状划分为不同数量的零件。可以在没有地面真相签名的距离,点正常或任何部分分区监督的情况下学习LPI。从重建精度和建模可解释性方面,LPI的表现优于广泛使用基准下的最新方法。我们的代码,数据和模型可在https://github.com/chenchao15/lpi上获得。
translated by 谷歌翻译
从\ emph {nocedended}点云中重建3D几何形状可以使许多下游任务受益。最近的方法主要采用神经网络的神经形状表示,以代表签名的距离字段,并通过无签名的监督适应点云。但是,我们观察到,使用未签名的监督可能会导致严重的歧义,并且通常会导致\ emph {意外}故障,例如在重建复杂的结构并与重建准确的表面斗争时,在自由空间中产生不希望的表面。为了重建一个更好的距离距离场,我们提出了半签名的神经拟合(SSN拟合),该神经拟合(SSN拟合)由半签名的监督和基于损失的区域采样策略组成。我们的关键见解是,签名的监督更具信息性,显然可以轻松确定对象之外的区域。同时,提出了一种新颖的重要性抽样,以加速优化并更好地重建细节。具体而言,我们将对象空间弹并分配到\ emph {sign-newand}和\ emph {sign-unawern}区域,其中应用了不同的监督。此外,我们根据跟踪的重建损失自适应地调整每个体素的采样率,以便网络可以更多地关注复杂的拟合不足区域。我们进行了广泛的实验,以证明SSN拟合在多个数据集的不同设置下实现最新性能,包括清洁,密度变化和嘈杂的数据。
translated by 谷歌翻译
Training parts from ShapeNet. (b) t-SNE plot of part embeddings. (c) Reconstructing entire scenes with Local Implicit Grids Figure 1:We learn an embedding of parts from objects in ShapeNet [3] using a part autoencoder with an implicit decoder. We show that this representation of parts is generalizable across object categories, and easily scalable to large scenes. By localizing implicit functions in a grid, we are able to reconstruct entire scenes from points via optimization of the latent grid.
translated by 谷歌翻译
The recent neural implicit representation-based methods have greatly advanced the state of the art for solving the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud. These methods generally learn either a binary occupancy or signed/unsigned distance field (SDF/UDF) as surface representation. However, all the existing SDF/UDF-based methods use neural networks to implicitly regress the distance in a purely data-driven manner, thus limiting the accuracy and generalizability to some extent. In contrast, we propose the first geometry-guided method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighbouring points. Besides, we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generalizability. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
translated by 谷歌翻译
本地化隐式功能的最新进展使神经隐式表示能够可扩展到大型场景。然而,这些方法采用的3D空间的定期细分未能考虑到表面占用的稀疏性和几何细节的变化粒度。结果,其内存占地面积与输入体积均别较大,即使在适度密集的分解中也导致禁止的计算成本。在这项工作中,我们为3D表面,编码OCTFIELD提供了一种学习的分层隐式表示,允许具有低内存和计算预算的复杂曲面的高精度编码。我们方法的关键是仅在感兴趣的表面周围分发本地隐式功能的3D场景的自适应分解。我们通过引入分层Octree结构来实现这一目标,以根据表面占用和部件几何形状的丰富度自适应地细分3D空间。随着八十六是离散和不可分辨性的,我们进一步提出了一种新颖的等级网络,其模拟八偏细胞的细分作为概率的过程,并以可差的方式递归地编码和解码八叠结构和表面几何形状。我们展示了Octfield的一系列形状建模和重建任务的价值,显示出在替代方法方面的优越性。
translated by 谷歌翻译
隐式神经网络已成功用于点云的表面重建。然而,它们中的许多人面临着可扩展性问题,因为它们将整个对象或场景的异构面功能编码为单个潜在载体。为了克服这种限制,一些方法在粗略普通的3D网格或3D补丁上推断潜伏向量,并将它们插入以应对占用查询。在这样做时,它们可以与对象表面上采样的输入点进行直接连接,并且它们在空间中均匀地附加信息,而不是其最重要的信息,即在表面附近。此外,依赖于固定的补丁大小可能需要离散化调整。要解决这些问题,我们建议使用点云卷积并计算每个输入点的潜伏向量。然后,我们使用推断的权重在最近的邻居上执行基于学习的插值。对象和场景数据集的实验表明,我们的方法在大多数古典指标上显着优于其他方法,产生更精细的细节和更好的重建更薄的卷。代码可在https://github.com/valeoai/poco获得。
translated by 谷歌翻译
场景完成是从场景的部分扫描中完成缺失几何形状的任务。大多数以前的方法使用3D网格上的截断签名距离函数(T-SDF)计算出隐式表示,作为神经网络的输入。截断限制,但不会删除由非关闭表面符号引入的模棱两可的案例。作为替代方案,我们提出了一个未签名的距离函数(UDF),称为未签名的加权欧几里得距离(UWED)作为场景完成神经网络的输入表示。 UWED作为几何表示是简单而有效的,并且可以在任何点云上计算,而与通常的签名距离函数(SDF)相比,UWED不需要正常的计算。为了获得明确的几何形状,我们提出了一种从常规网格上离散的UDF值提取点云的方法。我们比较了从RGB-D和LIDAR传感器收集的室内和室外点云上的场景完成任务的不同SDF和UDFS,并使用建议的UWED功能显示了改进的完成。
translated by 谷歌翻译
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.
translated by 谷歌翻译
Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network. Project video and website at ldif.cs.princeton.edu.
translated by 谷歌翻译
从嘈杂,不均匀和无知点云中的表面重建是计算机视觉和图形中的一个令人迷人但具有挑战性的问题。随着3D扫描技术的创新,强烈希望直接转换原始扫描数据,通常具有严重噪声,进入歧管三角网格。现有的基于学习的方法旨在学习零级曲面对底层形状进行的隐式功能。然而,大多数人都无法获得嘈杂和稀疏点云的理想结果,限制在实践中。在本文中,我们介绍了神经IML,一种新的方法,它直接从未引起的原始点云学习抗噪声符号距离功能(SDF)。通过最大限度地减少由隐式移动最小二乘函数获得的损耗,我们的方法通过最小化了自我监督的方式,从原始点云中从原始点云中的底层SDF,而不是明确地学习前提。 (IML)和我们的神经网络另一个,我们的预测器的梯度定义了便于计算IML的切线束。我们证明,当几个SDFS重合时,我们的神经网络可以预测符号隐式功能,其零电平集用作底层表面的良好近似。我们对各种基准进行广泛的实验,包括合成扫描和现实世界扫描,以表现出从各种投入重建忠实形状的能力,特别是对于具有噪音或间隙的点云。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
神经隐式功能的最新发展已在高质量的3D形状重建方面表现出巨大的成功。但是,大多数作品将空间分为形状的内部和外部,从而将其代表力量限制为单层和水密形状。这种局限性导致乏味的数据处理(将非紧密的原始数据转换为水密度),以及代表现实世界中一般对象形状的无能。在这项工作中,我们提出了一种新颖的方法来表示一般形状,包括具有多层表面的非水平形状和形状。我们介绍了3D形状(GIF)的一般隐式函数,该功能建模了每两个点之间的关系,而不是点和表面之间的关系。 GIF没有将3D空间分为预定义的内部区域,而是编码是否将两个点分开。 Shapenet上的实验表明,在重建质量,渲染效率和视觉保真度方面,GIF的表现优于先前的最先进方法。项目页面可从https://jianglongye.com/gifs获得。
translated by 谷歌翻译
我们为3D形状生成(称为SDF-Stylegan)提供了一种基于stylegan2的深度学习方法,目的是降低生成形状和形状集合之间的视觉和几何差异。我们将stylegan2扩展到3D世代,并利用隐式签名的距离函数(SDF)作为3D形状表示,并引入了两个新颖的全球和局部形状鉴别器,它们区分了真实和假的SDF值和梯度,以显着提高形状的几何形状和视觉质量。我们进一步补充了基于阴影图像的FR \'Echet Inception距离(FID)分数的3D生成模型的评估指标,以更好地评估生成形状的视觉质量和形状分布。对形状生成的实验证明了SDF-Stylegan比最先进的表现出色。我们进一步证明了基于GAN倒置的各种任务中SDF-Stylegan的功效,包括形状重建,部分点云的形状完成,基于单图像的形状形状生成以及形状样式编辑。广泛的消融研究证明了我们框架设计的功效。我们的代码和训练有素的模型可在https://github.com/zhengxinyang/sdf-stylegan上找到。
translated by 谷歌翻译
4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
深层隐式表面在建模通用形状方面表现出色,但并不总是捕获制造物体中存在的规律性,这是简单的几何原始词特别擅长。在本文中,我们提出了一个结合潜在和显式参数的表示,可以将其解码为一组彼此一致的深层隐式和几何形状。结果,我们可以有效地对制成物体共存的复杂形状和高度规则形状进行建模。这使我们能够以有效而精确的方式操纵3D形状的方法。
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
我们介绍DMTET,深度3D条件生成模型,可以使用诸如粗体素的简单用户指南来合成高分辨率3D形状。它通过利用新型混合3D表示来结婚隐式和显式3D表示的优点。与当前隐含的方法相比,培训涉及符号距离值,DMTET直接针对重建的表面进行了优化,这使我们能够用更少的伪像来合成更精细的几何细节。与直接生成诸如网格之类的显式表示的深度3D生成模型不同,我们的模型可以合成具有任意拓扑的形状。 DMTET的核心包括可变形的四面体网格,其编码离散的符号距离函数和可分行的行进Tetrahedra层,其将隐式符号距离表示转换为显式谱图表示。这种组合允许使用在表面网格上明确定义的重建和对抗性损耗来联合优化表面几何形状和拓扑以及生成细分层次结构。我们的方法显着优于来自粗体素输入的条件形状合成的现有工作,培训在复杂的3D动物形状的数据集上。项目页面:https://nv-tlabs.github.io/dmtet/
translated by 谷歌翻译