可以通过看不见的合作伙伴生成可以实现零拍打协调(ZSC)的代理是在合作多代理增强学习(MARL)中的新挑战。最近,一些研究通过在培训过程中将代理暴露于不同的伴侣中,从而在ZSC中取得了进展。他们通常在训练伴侣时涉及自我竞争,因为他们隐含地假设任务是同质的。但是,许多现实世界的任务都是异质的,因此以前的方法可能会失败。在本文中,我们首次研究了异质ZSC问题,并提出了一种基于协同进化的通用方法,该方法通过三个子过程进行了协调的两个代理和合作伙伴种群:配对,更新和选择。协作烹饪任务的实验结果表明需要考虑异质环境,并说明我们所提出的方法是异构合作MARL的有前途解决方案。
translated by 谷歌翻译
AI代理应该能够与人类协调以解决任务。我们考虑培训加强学习(RL)代理的问题,而不使用任何人类数据,即在零射击设置中,使其能够与人类合作。标准RL代理商通过自我播放学习。不幸的是,这些代理商只知道如何与自己合作,通常不会与人类的看不见的伙伴表现良好。如何以零射时的方式训练强大的代理的方法仍然需要研究。从最大熵RL激励,我们推出了集中的人口熵目标,以便于学习各种各样的代理商,后来用于培训坚强的代理与看不见的合作伙伴合作。所提出的方法与基线方法相比,其有效性,包括自助PPO,在流行的过度烹制的游戏环境中,包括自行式PPO,标准群体的培训(PBT)和基于轨迹分集的PBT。我们还通过真实人类进行在线实验,并进一步证明了该方法在现实世界中的功效。显示实验结果的补充视频可在https://youtu.be/xh-fkd0aake上获得。
translated by 谷歌翻译
与人类合作需要迅速适应他们的个人优势,缺点和偏好。遗憾的是,大多数标准的多智能经纪增强学习技术,如自助(SP)或人口剧(PP),产生培训合作伙伴的代理商,并且对人类不完全概括。或者,研究人员可以使用行为克隆收集人体数据,培训人类模型,然后使用该模型培训“人类感知”代理(“行为克隆播放”或BCP)。虽然这种方法可以改善代理商的概括到新的人类共同球员,但它涉及首先收集大量人体数据的繁重和昂贵的步骤。在这里,我们研究如何培训与人类合作伙伴合作的代理的问题,而无需使用人类数据。我们认为这个问题的症结是制作各种培训伙伴。从竞争域中取得成功的多智能经纪人方法绘制灵感,我们发现令人惊讶的简单方法非常有效。我们培养我们的代理商合作伙伴作为对自行发行代理人口的最佳反应及其过去培训的过去检查点,这是我们呼叫虚构共同扮演(FCP)的方法。我们的实验专注于两位运动员协作烹饪模拟器,最近被提议作为与人类协调的挑战问题。我们发现,与新的代理商和人类合作伙伴配对时,FCP代理商会显着高于SP,PP和BCP。此外,人类还报告了强烈的主观偏好,以与所有基线与FCP代理合作。
translated by 谷歌翻译
合作多代理设置中的标准问题设置是自我播放(SP),其目标是训练一个很好地合作的代理团队。但是,最佳SP政策通常包含任意惯例(“握手”),并且与其他受独立训练的代理商或人类不兼容。后者的Desiderata最近由Hu等人正式化。 2020年作为零射击协调(ZSC)设置,并以其其他游戏(OP)算法进行了部分解决,该算法在纸牌游戏Hanabi中显示出改进的ZSC和人类表现。 OP假设访问环境的对称性,并防止代理在训练过程中以相互不相容的方式破坏它们。但是,正如作者指出的那样,发现给定环境的对称性是一个计算困难的问题。取而代之的是,我们通过简单的K级推理(KLR)Costa Gomes等人表明。 2006年,我们可以同步训练所有级别,我们可以在哈纳比(Hanabi)获得竞争性的ZSC和临时团队表现,包括与类似人类的代理机器人配对。我们还引入了一种具有最佳响应(SYKLRBR)的新方法,即同步的K级推理,该方法通过共同培训最佳响应来进一步提高同步KLR的性能。
translated by 谷歌翻译
随着alphago的突破,人机游戏的AI已经成为一个非常热门的话题,吸引了世界各地的研究人员,这通常是测试人工智能的有效标准。已经开发了各种游戏AI系统(AIS),如Plibratus,Openai Five和AlphaStar,击败了专业人员。在本文中,我们调查了最近的成功游戏AIS,覆盖棋盘游戏AIS,纸牌游戏AIS,第一人称射击游戏AIS和实时战略游戏AIS。通过这项调查,我们1)比较智能决策领域的不同类型游戏之间的主要困难; 2)说明了开发专业水平AIS的主流框架和技术; 3)提高当前AIS中的挑战或缺点,以实现智能决策; 4)试图提出奥运会和智能决策技巧的未来趋势。最后,我们希望这篇简短的审查可以为初学者提供介绍,激发了在游戏中AI提交的研究人员的见解。
translated by 谷歌翻译
Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
translated by 谷歌翻译
Ad Hoc团队合作问题描述了代理商必须与以前看不见的代理商合作以实现共同目标的情况。对于在这些场景中成功的代理商,它必须具有合适的合作技能。可以通过使用域知识来设计代理人的行为来实现协作技巧的合作技能。但是,在复杂的域中,可能无法使用域知识。因此,值得探索如何直接从数据中学习合作技能。在这项工作中,我们在临时团队合作问题的背景下申请元加强学习(Meta-RL)制定。我们的经验结果表明,这种方法可以在两个合作环境中产生具有不同合作环境的强大合作社:社会合议和语言解释。(这是扩展抽象版的全文。)
translated by 谷歌翻译
近端策略优化(PPO)是一种普遍存在的上利期内学习算法,但在多代理设置中的非政策学习算法所使用的算法明显少得多。这通常是由于认为PPO的样品效率明显低于多代理系统中的销售方法。在这项工作中,我们仔细研究了合作多代理设置中PPO的性能。我们表明,基于PPO的多代理算法在四个受欢迎的多代理测试台上取得了令人惊讶的出色表现:粒子世界环境,星际争霸多代理挑战,哈纳比挑战赛和Google Research Football,并具有最少的超参数调谐任何特定领域的算法修改或架构。重要的是,与强大的非政策方法相比,PPO通常在最终奖励和样本效率中都能取得竞争性或优越的结果。最后,通过消融研究,我们分析了对PPO的经验表现至关重要的实施和高参数因素,并就这些因素提供了具体的实用建议。我们的结果表明,在使用这些实践时,简单的基于PPO的方法在合作多代理增强学习中是强大的基线。源代码可在https://github.com/marlbenchmark/on-policy上发布。
translated by 谷歌翻译
深度加强学习(DRL)在复杂的视频游戏中取得了超级性能(例如,星际争霸II和DOTA II)。然而,目前的DRL系统仍然遭受多助手协调,稀疏奖励,随机环境等的挑战。在寻求解决这些挑战时,我们雇用了足球视频游戏,例如Google Research Football(GRF),如我们测试的开发基于端到端的学习的AI系统(表示为Tickick)以完成此具有挑战性的任务。在这项工作中,我们首先从联赛培训获得的单一代理专家的自我播放中生成了一个大型重播数据集。然后,我们开发了一个分布式学习系统和新的离线算法,以从固定的单个代理数据集中学习一个强大的多辅助AI。据我们所知,Tickick是第一个基于学习的AI系统,可以接管多个Agent Google Research Footful Game,而以前的工作可以控制单一代理或实验玩具学术情景。广泛的实验进一步表明,我们的预先训练的模型可以加速现代多功能算法的训练过程,我们的方法在各种学术方案上实现了最先进的性能。
translated by 谷歌翻译
自驱动粒子(SDP)描述了日常生活中常见的一类常见的多种子体系统,例如植绒鸟类和交通流量。在SDP系统中,每个代理商都追求自己的目标,并不断改变其与附近代理商的合作或竞争行为。手动设计用于此类SDP系统的控制器是耗时的,而产生的紧急行为往往是不可逼真的,也不是更广泛的。因此,SDP系统的现实模拟仍然具有挑战性。强化学习提供了一种吸引人的替代方案,用于自动化SDP控制器的开发。然而,以前的多档强化学习(Marl)方法将代理人定义为手头之前的队友或敌人,这未能捕获每个代理的作用的SDP的本质,即使在一个集中也变化或竞争。为了用Marl模拟SDP,一个关键挑战是协调代理的行为,同时仍然最大化个人目标。将交通仿真作为测试床,在这项工作中,我们开发了一种称为协调政策优化(Copo)的新型MARL方法,该方法包括社会心理学原理来学习SDP的神经控制器。实验表明,与各种度量标准的Marl基线相比,该方法可以实现优越的性能。明显的车辆明显地表现出复杂和多样化的社会行为,以提高整个人口的性能和安全性。演示视频和源代码可用于:https://decisionforce.github.io/copo/
translated by 谷歌翻译
本文提出了用于学习两人零和马尔可夫游戏的小说,端到端的深钢筋学习算法。我们的目标是找到NASH平衡政策,这些策略不受对抗对手的剥削。本文与以前在广泛形式的游戏中找到NASH平衡的努力不同,这些游戏具有树结构的过渡动态和离散的状态空间,本文着重于具有一般过渡动态和连续状态空间的马尔可夫游戏。我们提出了(1)NASH DQN算法,该算法将DQN与nash finding subroutine集成在一起的联合价值函数; (2)NASH DQN利用算法,该算法还采用了指导代理商探索的剥削者。我们的算法是理论算法的实用变体,这些变体可以保证在基本表格设置中融合到NASH平衡。对表格示例和两个玩家Atari游戏的实验评估证明了针对对抗对手的拟议算法的鲁棒性,以及对现有方法的优势性能。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
虽然多代理学习的进步使得能够培训越来越复杂的代理商,但大多数现有技术都产生了最终政策,该政策不旨在适应新的合作伙伴的战略。但是,我们希望我们的AI代理商根据周围的战略来调整他们的战略。在这项工作中,我们研究了有条件的多代理模仿学习问题,我们可以在培训时间访问联合轨迹演示,我们必须在测试时间与新合作伙伴进行互动并适应新伙伴。这种环境是具有挑战性的,因为我们必须推断新的合作伙伴的战略并使我们的政策适应该战略,而不是了解环境奖励或动态。我们将该条件多代理模仿学习的问题正式化,提出了一种解决可扩展性和数据稀缺的困难的新方法。我们的主要洞察力是,多种代理游戏的合作伙伴的变化通常很高,并且可以通过低秩子空间来表示。利用张量分解的工具,我们的模型在EGO和合作伙伴代理战略上学习了低秩子空间,然后是infers并通过插值在子空间中互动到新的合作伙伴策略。我们用混合协作任务的实验,包括匪徒,粒子和Hanabi环境。此外,我们还测试我们对超级烹饪游戏的用户学习中的真实人体合作​​伙伴的条件政策。与基线相比,我们的模型更好地适应新的合作伙伴,并强大地处理各种设置,从离散/持续的动作和静态/在线评估与AI / Lean Partners。
translated by 谷歌翻译
在多智能体增强学习中,代理在单一马尔可夫游戏(MG)中学习的行为通常限制在给定的代理编号(即人口大小)。各种群体尺寸引起的每一个MG都可能具有不同的最佳联合策略和游戏特异性知识,这些知识在现代多代理算法中独立建模。在这项工作中,我们专注于创造贯穿人口不同MGS的代理商。每个代理商都没有学习单峰策略,而不是学习一个由各种游戏中的有效策略形成的策略集。我们向代理人(MRA)提出了META表示,明确地模拟了比赛共同和特定于游戏的战略知识。通过表示具有多模态潜在策略的策略集,通过迭代优化过程发现了常见的战略知识和不同的战略模式。我们证明,作为受限制的互信息最大化目标的近似值,所测策略可以在嘴唇奇茨比赛上的每一个评估MG上达到NASH均衡,在一个足够大的潜伏空间上。在具有有限尺寸的实际潜在模型的实际潜在模型中部署时,可以通过利用一阶梯度信息来实现快速适应。广泛的实验表明,MRA对艰难和看不见游戏的培训表现和泛化能力的有效性。
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
软件测试活动旨在找到软件产品的可能缺陷,并确保该产品满足其预期要求。一些软件测试接近的方法缺乏自动化或部分自动化,这增加了测试时间和整体软件测试成本。最近,增强学习(RL)已成功地用于复杂的测试任务中,例如游戏测试,回归测试和测试案例优先级,以自动化该过程并提供持续的适应。从业者可以通过从头开始实现RL算法或使用RL框架来使用RL。开发人员已广泛使用这些框架来解决包括软件测试在内的各个领域中的问题。但是,据我们所知,尚无研究从经验上评估RL框架中实用算法的有效性和性能。在本文中,我们凭经验研究了精心选择的RL算法在两个重要的软件测试任务上的应用:在连续集成(CI)和游戏测试的上下文中测试案例的优先级。对于游戏测试任务,我们在简单游戏上进行实验,并使用RL算法探索游戏以检测错误。结果表明,一些选定的RL框架,例如Tensorforce优于文献的最新方法。为了确定测试用例的优先级,我们在CI环境上运行实验,其中使用来自不同框架的RL算法来对测试用例进行排名。我们的结果表明,在某些情况下,预实算算法之间的性能差异很大,激励了进一步的研究。此外,建议对希望选择RL框架的研究人员进行一些基准问题的经验评估,以确保RL算法按预期执行。
translated by 谷歌翻译
当一个代理与多代理环境互动时,与以前看不见的各种对手打交道是一项挑战。建模对手的行为,目标或信念可以帮助代理人调整其政策以适应不同的对手。此外,考虑同时学习或能够推理的对手也很重要。但是,现有工作通常仅处理上述对手类型之一。在本文中,我们提出了基于模型的对手建模(MBOM)​​,该模型采用环境模型来适应各种对手。 MBOM在环境模型中模拟了递归推理过程,并想象一组改进对手政策。为了有效,准确地代表对手政策,MBOM根据与对手的真实行为的相似性进一步将想象中的对手政策混合在一起。从经验上讲,我们表明,MBOM比在各种任务中的现有方法更有效地适应,分别具有不同类型的对手,即固定的政策,NA \“ IVE”学习者和推理者。
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译