我们证明,任何矩阵产品状态(MP)可以通过线性内存更新的复发神经网络(RNN)来精确表示。我们使用多线性内存更新将此RNN体系结构推广到2D晶格。它支持在多项式时间内的完美采样和波功能评估,并且可以代表纠缠熵的区域定律。数值证据表明,与MPS相比,它可以使用键尺寸较低的键尺寸编码波函数,其精度可以通过增加键尺寸来系统地改善。
translated by 谷歌翻译
仪表不变性在量子力学从冷凝物物理到高能物理中起着至关重要的作用。我们开发了一种构建量子晶格模型构建仪表不变自回归神经网络的方法。这些网络可以有效地采样和明确地遵循仪表对称性。我们为地面状态和各种模型的实时动态进行了各种优化我们的仪表不变自回归神经网络。我们精确地代表了2D和3D转矩代码的地面和激励状态,以及X-Cube Fracton模型。我们模拟$ \ text {u(1)} $格式理论的量子链路模型的动态和Gound状态,获取2d $ \ mathbb {z} _2 $仪表理论的相图,确定相位过渡和$ \文本的中心收费{su(2)} _ 3 $ anyonic链,也计算SU(2)不变的Heisenberg旋转链的地面状态能量。我们的方法提供了强大的工具,可探索凝聚物物理,高能量物理和量子信息科学。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
由于希尔伯特空间的指数增长,模拟古典计算机上的量子数量是一个具有挑战性的问题。最近被引入了人工神经网络作为近似量子 - 许多身体状态的新工具。我们基准限制Boltzmann机器量子状态和不同浅层神经自动汇流量子状态的变分力,以模拟不可排益量子依赖链的全局淬火动态。我们发现在给定精度以给定精度表示量子状态所需的参数的数量呈指数增长。增长率仅受到广泛不同设计选择的网络架构的略微影响:浅层和深度网络,小型和大型过滤尺寸,扩张和正常卷积,有和没有快捷连接。
translated by 谷歌翻译
经常性的神经网络(RNN)是一类神经网络,这些神经网络已从人工智能的范式中出现,并在自然语言处理领域实现了许多有趣的进步。有趣的是,这些体系结构被证明是强大的Ansatze,可近似量子系统的基态。在这里,我们建立了[Phys的结果。Rev. Research 2,023358(2020)]并在二维中构建了更强大的RNN波函数ANSATZ。我们使用对称性和退火来获得对二维(2D)海森贝格模型的基态能量的准确估计,在方形晶格和三角形晶格上。我们表明,对于三角形晶格上的大于或等于$ 14 \ $ 14 $的系统尺寸,我们的方法优于密度矩阵ren量量量量标准(DMRG)。
translated by 谷歌翻译
复杂的高尺寸概率分布的高效采样是计算科学中的核心任务。机器学习方法,如自动增加神经网络,与马尔可夫链蒙特卡罗采样一起使用,为这种分布提供良好的近似,但遭受内在偏差或高方差。在这封信中,我们提出了一种方法来使这种近似不偏不倚,方差低。我们的方法使用物理对称和可变大小的群集更新,它利用自回归分解的结构。我们测试我们的古典自旋系统的第一阶和二阶相变的方法,显示其对关键系统和亚稳态存在的可行性。
translated by 谷歌翻译
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the $U(1)$ degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous $U(1)$ system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
translated by 谷歌翻译
我们介绍了革兰氏 - 哈达马德密度运算符(GHDO),这是一种新的深神经网络结构,可以用多项式资源编码指数级的正差半准密度运算符。然后,我们展示如何在GHDO中嵌入自回归结构,以直接对概率分布进行采样。当表示与环境相互作用的系统的混合量子状态时,这些属性尤为重要。最后,我们通过模拟耗散横向场模型的稳态来对此结构进行基准测试。估计局部可观察物和r \'enyi熵,我们对先前最新的变异方法显示出显着改善。
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
深度学习方法已被证明可以有效地表示量子多体系统的地面波函数。现有方法由于其图像样结构而使用卷积神经网络(CNN)进行方格。对于非方格晶格,现有方法使用图形神经网络(GNN),其中未精确捕获结构信息,从而需要其他手工制作的Sublattice编码。在这项工作中,我们提出了晶格卷积,其中使用一组建议的操作将非方格晶格转换为类似网格的增强晶格,可以在上进行定期卷积。根据提议的晶格卷积,我们设计了使用自我门控和注意机制的晶格卷积网络(LCN)。实验结果表明,我们的方法在PAR上的性能或比Spin 1/2 $ J_1 $ - $ J_2 $ HEISENBERG模型在Square,Honeycomb,Triangular和Kagome Lattices上的现有方法更好,而无需使用手工制作的编码。
translated by 谷歌翻译
我们为$ S_N $-Quivariant Quantum卷积电路,建立并大大概括了Jordan的置力量子计算(PQC)形式主义的理论框架。我们表明量子电路是傅里叶空间神经架构的自然选择,其在计算$ S_N $ -Fourier系数的矩阵元素中,与在对称组上的最佳已知的经典快速傅里叶变换(FFT)相比计算的超级指数加速。特别是,我们利用Okounkov-Vershik方法来证明Harrow的陈述(Ph.D.论文2005 P.160)在$ \ OperatorName {su}(d)$ - 和$ s_n $-frirep基地之间并建立$ s_n $-arequivariant卷积量子交替使用年轻Jucys-Murphy(YJM)元素的ans {\“a} tze($ s_n $ -cqa)。我们证明了$ s_n $ -cqa是密集的,因此在每美元内表达S_N $-Frirep块,其可以作为潜在的未来量子机器学习和优化应用成为普遍模型。我们的方法提供了另一种方法来证明量子近似优化算法(QAOA)的普遍性,从表示理论的角度来看。我们的框架可以自然地应用于全局$ \ Operatorname {su}(d)$对称性的各种问题。我们展示了数值模拟以展示ANS {\“A} TEE的有效性,以找到标志结构$ j_1 $ - $ j_2 $反铁磁性Heisenberg模型在矩形和矩形状态Kagome格子。我们的工作确定了特定机器学习问题的量子优势,并提供了庆祝的Okounkov-Vershik的表示理论的第一次应用于机器学习和量子物理学。
translated by 谷歌翻译
受限的玻尔兹曼机器(RBMS)提供了一种用于无监督的机器学习的多功能体系结构,原则上可以以任意准确性近似任何目标概率分布。但是,RBM模型通常由于其计算复杂性而无法直接访问,并调用了Markov-Chain采样以分析学习概率分布。因此,对于培训和最终应用,希望拥有既准确又有效的采样器。我们强调,这两个目标通常相互竞争,无法同时实现。更具体地说,我们确定并定量地表征了RBM学习的三个制度:独立学习,精度提高而不会失去效率;相关学习,较高的精度需要较低的效率;和退化,精度和效率都不再改善甚至恶化。这些发现基于数值实验和启发式论点。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
可微分的编程是一种新的编程范式,它通过自动计算梯度的自动计算也称为自动分化。这一概念从深度学习中出现,并且也普遍化了张量网络优化。在这里,我们将不同的规划扩展到张量网络,其具有与多尺度纠缠重新运算Ansatz(MERA)和张量网络重新运行(TNR)的应用程序的等距约束。通过为等距张量网络引入几种基于梯度的优化方法并与平均vidal方法进行比较,我们表明自我分化具有更好的性能,可实现稳定性和准确性。我们在1D关键量子ising旋转链和2D古典ising模型上进行了数值测试了我们的方法。我们为古典模型的1D量子模型和内部能量计算地位能量,以及缩放操作员的缩放尺寸,并找到它们都同意理论良好的同意。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
Quantum many-body problems are some of the most challenging problems in science and are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors. The combination of neural networks (NN) for representing quantum states, coupled with the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems. However, the run-time of this approach scales quadratically with the number of simulated particles, constraining the practically usable NN to - in machine learning terms - minuscule sizes (<10M parameters). Considering the many breakthroughs brought by extreme NN in the +1B parameters scale to other domains, lifting this constraint could significantly expand the set of quantum systems we can accurately simulate on classical computers, both in size and complexity. We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm - the source of the quadratic scaling. In our preliminary experiments, we demonstrate VQ-NQS ability to reproduce the ground state of the 2D Heisenberg model across various system sizes, while reporting a significant reduction of about ${\times}10$ in the number of FLOPs in the local-energy calculation.
translated by 谷歌翻译
神经量子状态是通过人工神经网络参数化的变异波函数,这是一种数学模型,在机器学习社区中数十年。在多体物理学的背景下,诸如具有神经量子状态的变异蒙特卡洛作为变异波函数之类的方法在近似精确的近似性方面是成功的,即量子哈密顿量的基础。但是,提出神经网络体系结构的所有困难,以及探索其表现力和训练性,都渗透到其作为神经量子状态的应用。在本文中,我们考虑了Feynman-Kitaev Hamiltonian的横向场模型,该模型的基态编码在离散时间步骤下旋转链的时间演变。我们展示了该基础状态问题如何特别挑战神经量子状态的训练性,因为时间步骤的增加,因为真实的基态变得更加纠缠,并且概率分布开始遍及希尔伯特空间。我们的结果表明,所考虑的神经量子状态能够准确地近似系统的真实基态,即它们具有足够的表现。然而,广泛的超参数调整实验表明,经验事实是,在变化的蒙特卡洛设置中,训练性较差 - 可以防止对真实基态的忠实近似。
translated by 谷歌翻译