深度学习方法已被证明可以有效地表示量子多体系统的地面波函数。现有方法由于其图像样结构而使用卷积神经网络(CNN)进行方格。对于非方格晶格,现有方法使用图形神经网络(GNN),其中未精确捕获结构信息,从而需要其他手工制作的Sublattice编码。在这项工作中,我们提出了晶格卷积,其中使用一组建议的操作将非方格晶格转换为类似网格的增强晶格,可以在上进行定期卷积。根据提议的晶格卷积,我们设计了使用自我门控和注意机制的晶格卷积网络(LCN)。实验结果表明,我们的方法在PAR上的性能或比Spin 1/2 $ J_1 $ - $ J_2 $ HEISENBERG模型在Square,Honeycomb,Triangular和Kagome Lattices上的现有方法更好,而无需使用手工制作的编码。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
由于希尔伯特空间的指数增长,模拟古典计算机上的量子数量是一个具有挑战性的问题。最近被引入了人工神经网络作为近似量子 - 许多身体状态的新工具。我们基准限制Boltzmann机器量子状态和不同浅层神经自动汇流量子状态的变分力,以模拟不可排益量子依赖链的全局淬火动态。我们发现在给定精度以给定精度表示量子状态所需的参数的数量呈指数增长。增长率仅受到广泛不同设计选择的网络架构的略微影响:浅层和深度网络,小型和大型过滤尺寸,扩张和正常卷积,有和没有快捷连接。
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
仪表不变性在量子力学从冷凝物物理到高能物理中起着至关重要的作用。我们开发了一种构建量子晶格模型构建仪表不变自回归神经网络的方法。这些网络可以有效地采样和明确地遵循仪表对称性。我们为地面状态和各种模型的实时动态进行了各种优化我们的仪表不变自回归神经网络。我们精确地代表了2D和3D转矩代码的地面和激励状态,以及X-Cube Fracton模型。我们模拟$ \ text {u(1)} $格式理论的量子链路模型的动态和Gound状态,获取2d $ \ mathbb {z} _2 $仪表理论的相图,确定相位过渡和$ \文本的中心收费{su(2)} _ 3 $ anyonic链,也计算SU(2)不变的Heisenberg旋转链的地面状态能量。我们的方法提供了强大的工具,可探索凝聚物物理,高能量物理和量子信息科学。
translated by 谷歌翻译
深度神经网络非常成功,因为高度准确的波函数ANS \“ ATZE用于分子基础状态的变异蒙特卡洛计算。我们提出了一个这样的Ansatz,Ferminet的扩展,以计算定期汉密尔顿人的基础状态,并研究均质电子气。小电子气体系统基态能量的费米特计算与先前的启动器完全构型相互作用量子蒙特卡洛和扩散蒙特卡洛计算非常吻合。我们研究了自旋偏振均质的均质电子气体,并证明了这一点相同神经网络架构能够准确地代表离域的费米液态和局部的晶体状态。没有给出网络,没有\ emph {a emph {a a a emph {a a emph {a e emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {并自发打破对称性以产生结晶蛋白E基态在低密度下。
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
神经网络和量子蒙特卡罗方法的组合作为前进的高精度电子结构计算的道路出现。以前的建议具有组合具有反对称层的增强的神经网络层,以满足电子波技的反对称要求。但是,迄今为止,如果可以代表物理兴趣的反对称功能,则不清楚尚不清楚,并且难以测量反对称层的富有效果。这项工作通过将明确的防视通用神经网络层作为诊断工具引入明确的防视通用神经网络层来解决这个问题。我们首先介绍一种通用的反对二手(GA)层,我们用于更换称为FEMINET的高精度ANSATZ的整个防反对二层层。我们证明所得到的FERMINET-GA架构可以有效地产生小型系统的确切地位能量。然后,我们考虑一种分解的反对称(FA)层,其通过替换具有反对称神经网络的产品的决定因素的产品更易于推广FERMINET。有趣的是,由此产生的FERMINET-FA架构并不优于FERMINET。这表明抗体产品的总和是Ferminet架构的关键限制方面。为了进一步探索这一点,我们研究了称为全决定性模式的FERMINET的微小修改,其用单一组合的决定蛋白取代了决定因素的每个产物。完整的单决定性Ferminet封闭标准单决定性Ferminet和Ferminet-Ga之间的大部分间隙。令人惊讶的是,在4.0 BoHR的解离键长度的氮素分子上,全单决定性Ferminet可以显着优于标准的64个决定性Ferminet,从而在0.4千卡/摩尔中获得最佳可用计算基准的能量。
translated by 谷歌翻译
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the $U(1)$ degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous $U(1)$ system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
translated by 谷歌翻译
我们训练神经形态硬件芯片以通过变分能最小化近似Quantum旋转模型的地面状态。与使用马尔可夫链蒙特卡罗进行样品生成的变分人工神经网络相比,这种方法具有优点:神经形态器件以快速和固有的并行方式产生样品。我们开发培训算法,并将其应用于横向场介绍模型,在中等系统尺寸下显示出良好的性能($ n \ LEQ 10 $)。系统的普遍开心研究表明,较大系统尺寸的可扩展性主要取决于样品质量,该样品质量受到模拟神经芯片上的参数漂移的限制。学习性能显示阈值行为作为ansatz的变分参数的数量的函数,大约为50美元的隐藏神经元,足以表示关键地位,最高$ n = 10 $。网络参数的6 + 1位分辨率不会限制当前设置中的可达近似质量。我们的工作为利用神经形态硬件的能力提供了一种重要的一步,以解决量子数量问题中的维数诅咒。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们证明,任何矩阵产品状态(MP)可以通过线性内存更新的复发神经网络(RNN)来精确表示。我们使用多线性内存更新将此RNN体系结构推广到2D晶格。它支持在多项式时间内的完美采样和波功能评估,并且可以代表纠缠熵的区域定律。数值证据表明,与MPS相比,它可以使用键尺寸较低的键尺寸编码波函数,其精度可以通过增加键尺寸来系统地改善。
translated by 谷歌翻译
Gauge Theory plays a crucial role in many areas in science, including high energy physics, condensed matter physics and quantum information science. In quantum simulations of lattice gauge theory, an important step is to construct a wave function that obeys gauge symmetry. In this paper, we have developed gauge equivariant neural network wave function techniques for simulating continuous-variable quantum lattice gauge theories in the Hamiltonian formulation. We have applied the gauge equivariant neural network approach to find the ground state of 2+1-dimensional lattice gauge theory with U(1) gauge group using variational Monte Carlo. We have benchmarked our approach against the state-of-the-art complex Gaussian wave functions, demonstrating improved performance in the strong coupling regime and comparable results in the weak coupling regime.
translated by 谷歌翻译
机器学习最近被出现为研究复杂现象的有希望的方法,其特征是丰富的数据集。特别地,以数据为中心的方法为手动检查可能错过的实验数据集中自动发现结构的可能性。在这里,我们介绍可解释的无监督监督的混合机学习方法,混合相关卷积神经网络(Hybrid-CCNN),并将其应用于使用基于Rydberg Atom阵列的可编程量子模拟器产生的实验数据。具体地,我们应用Hybrid-CCNN以通过可编程相互作用分析在方形格子上的新量子阶段。初始无监督的维度降低和聚类阶段首先揭示了五个不同的量子相位区域。在第二个监督阶段,我们通过培训完全解释的CCNN来细化这些相界并通过训练每个阶段提取相关的相关性。在条纹相中的每个相捕获量子波动中专门识别的特征空间加权和相关的相关性并鉴定两个先前未检测到的相,菱形和边界有序相位。这些观察结果表明,具有机器学习的可编程量子模拟器的组合可用作有关相关量子态的详细探索的强大工具。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
基于标准化流的算法是由于有希望的机器学习方法,以便以可以使渐近精确的方式采样复杂的概率分布。在格子场理论的背景下,原则上的研究已经证明了这种方法对标量理论,衡量理论和统计系统的有效性。这项工作开发了能够使用动力学蜕皮的基于流动的理论采样的方法,这对于应用于粒子物理标准模型和许多冷凝物系的晶格场理论研究是必要的。作为一种实践演示,这些方法应用于通过Yukawa相互作用耦合到标量场的无大量交错的费米子的二维理论的现场配置的采样。
translated by 谷歌翻译
解决SCHR \“Odinger方程是许多量子力学性能的关键。然而,分析解决方案仅用于单电子系统的易行。最近,神经网络在许多电子系统的建模波函数中成功。与变分蒙特 - Carlo(VMC)框架,这导致了与最着名的经典方法相提并论的解决方案。仍然,这些神经方法需要大量的计算资源,因为一个人必须为每个分子几何训练单独的模型。在这项工作中,我们结合了一个图形神经网络(GNN)具有神经波功能,同时通过VMC解决多个几何的SCHR \“Odinger方程。这使我们能够通过单个训练通过模拟潜在能量表面的连续子集。与现有的最先进的网络相比,我们的潜在能量表面网络PESNet在匹配或超越其准确性的同时将多个几何形状的训练速度加速至多40次。这可以打开准确和数量级的路径便宜的量子力学计算。
translated by 谷歌翻译