联合学习(FL)是一种趋势培训范式,用于利用分散培训数据。 FL允许客户端在本地更新几个时期的模型参数,然后将它们共享到全局模型以进行聚合。在聚集之前,该训练范式具有多本地步骤更新,使对抗性攻击暴露了独特的漏洞。对手训练是一种流行而有效的方法,可以提高网络对抗者的鲁棒性。在这项工作中,我们制定了一种一般形式的联邦对抗学习(FAL),该形式是从集中式环境中的对抗性学习改编而成的。在FL培训的客户端,FAL具有一个内部循环,可以生成对抗性样本进行对抗训练和外循环以更新本地模型参数。在服务器端,FAL汇总了本地模型更新并广播聚合的模型。我们设计了全球强大的训练损失,并将FAL培训作为最小最大优化问题。与依赖梯度方向的经典集中式培训中的收敛分析不同,由于三个原因,很难在FAL中分析FAL的收敛性:1)Min-Max优化的复杂性,2)模型未在梯度方向上更新聚合之前的客户端和3)客户间异质性的多局部更新。我们通过使用适当的梯度近似和耦合技术来应对这些挑战,并在过度参数化的制度中介绍收敛分析。从理论上讲,我们的主要结果表明,我们的算法下的最小损失可以收敛到$ \ epsilon $ Small,并具有所选的学习率和交流回合。值得注意的是,我们的分析对于非IID客户是可行的。
translated by 谷歌翻译
对抗训练是一种广泛使用的策略,可以使神经网络具有抵抗对抗性扰动的能力。对于宽度$ m $,$ n $输入培训数据的神经网络,在$ d $ dimension中,需要$ \ omega(MND)$每次培训迭代的时间费用来进行前进和向后计算。在本文中,我们分析了具有转移的Relu激活的两层神经网络上对抗训练程序的收敛保证,并表明每次迭代的每个输入数据都只能激活$ O(M)$神经元。此外,通过应用半空间报告数据结构,我们开发了一种用于对抗培训的算法,以$ O(m n d)$ $ O(m n d)$。
translated by 谷歌翻译
联合学习(FL)是一种保护隐私的范式,其中多个参与者共同解决机器学习问题而无需共享原始数据。与传统的分布式学习不同,FL的独特特征是统计异质性,即,跨参与者的数据分布彼此不同。同时,神经网络解释的最新进展已广泛使用神经切线核(NTK)进行收敛分析。在本文中,我们提出了一个新颖的FL范式,该范式由NTK框架赋予了能力。该范式通过传输比常规FL范式更具表现力的更新数据来解决统计异质性的挑战。具体而言,通过样本的雅各布矩阵,而不是模型的权重/梯度,由参与者上传。然后,服务器构建了经验内核矩阵,以更新全局模型,而无需明确执行梯度下降。我们进一步开发了一种具有提高沟通效率和增强隐私性的变体。数值结果表明,与联邦平均相比,所提出的范式可以达到相同的精度,同时将通信弹的数量减少数量级。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
跨核心联合学习(FL)已成为医疗保健机器学习应用程序中有前途的工具。它允许医院/机构在数据私有时使用足够的数据培训模型。为了确保FL模型在FL客户之间面对异质数据时,大多数努力都集中在为客户个性化模型上。但是,客户数据之间的潜在关系被忽略了。在这项工作中,我们专注于一个特殊的非IID FL问题,称为域混合FL,其中每个客户的数据分布都被认为是几个预定域的混合物。认识到域的多样性和域内的相似性,我们提出了一种新颖的方法Feddar,该方法以脱钩的方式学习了域共享表示形式和域名个性化的预测头。对于简化的线性回归设置,我们从理论上证明了Feddar具有线性收敛速率。对于一般环境,我们对合成和现实世界医学数据集进行了深入的经验研究,这些研究表明了其优越性比先前的FL方法。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
由于客户端之间标签不平衡的普遍性,联邦对抗域适应是一种独特的分布式Minimax培训任务,每个客户端只看到培训全局模型所需的标签类的子集。为了解决这个问题,我们提出了一个分布式Minimax优化器,称为FEDMM,专为联邦对抗域适应问题而设计。即使在每个客户端具有不同的标签类,某些客户端只有无监督的任务,它也运作良好。我们证明了FEDMM确保将达到域移位无监督数据的静止点收敛。在各种基准数据集中,广泛的实验表明,基于梯度下降升降算法例如,当从头划伤训练时,它以相同的通信回合占据了其他基于GDA的联合平均方法的准确性约为20%;当从预先训练的模型培训时,它始终如一地优于不同网络的5.4 \%$ 9 \%$ 9 \%$。
translated by 谷歌翻译
Federated learning allows collaborative workers to solve a machine learning problem while preserving data privacy. Recent studies have tackled various challenges in federated learning, but the joint optimization of communication overhead, learning reliability, and deployment efficiency is still an open problem. To this end, we propose a new scheme named federated learning via plurality vote (FedVote). In each communication round of FedVote, workers transmit binary or ternary weights to the server with low communication overhead. The model parameters are aggregated via weighted voting to enhance the resilience against Byzantine attacks. When deployed for inference, the model with binary or ternary weights is resource-friendly to edge devices. We show that our proposed method can reduce quantization error and converges faster compared with the methods directly quantizing the model updates.
translated by 谷歌翻译
鉴于密集的浅色神经网络,我们专注于迭代创建,培训和组合随机选择的子网(代理函数),以训练完整模型。通过仔细分析$ i)$ Subnetworks的神经切线内核,II美元)$代理职能'梯度,以及$ iii)$我们如何对替代品函数进行采样并结合训练错误的线性收敛速度 - 内部一个错误区域 - 对于带有回归任务的Relu激活的过度参数化单隐藏层Perceptron。我们的结果意味着,对于固定的神经元选择概率,当我们增加代理模型的数量时,误差项会减少,并且随着我们增加每个所选子网的本地训练步骤的数量而增加。考虑的框架概括并提供了关于辍学培训,多样化辍学培训以及独立的子网培训的新见解;对于每种情况,我们提供相应的收敛结果,作为我们主要定理的冠状动脉。
translated by 谷歌翻译
虽然客户的采样是当前最先进的联邦学习(FL)方法的核心运营,但该程序对迄今为止的迄今为止迄今为止的收敛和速度的影响。在这项工作中,我们为FL的收敛介绍了一种新颖的分解定理,允许清楚地量化客户对全局模型更新的影响。与之前的收敛分析相反,我们的定理提供了给定的收敛步骤的精确分解,从而能够准确考虑客户端采样和异质性的作用。首先,我们为先前报告的结果提供了一种理论基础,从收敛性与聚集权重之间的关系之间的关系。其次,我们首次证明了FL收敛的质量也受到聚集重量之间产生的协方差的影响。第三,我们建立了聚集权重的总和是另一个减速的来源,应该等于1来提高流动速度。我们的理论是一般性的,这里申请了多项分布(MD)和统一采样,在FL中的两个默认客户端采样,并通过一系列非IID和不平衡情景进行了演示。我们的结果表明,MD采样应用作默认采样方案,因为在学习过程中的数据比变化的恢复,而统一的采样仅在客户端具有相同数量的数据时才是优越的。
translated by 谷歌翻译
在本文中,我们提出\ texttt {fgpr}:一个联合高斯进程($ \ mathcal {gp} $)回归框架,它使用了用于本地客户端计算的模型聚合和随机梯度血缘的平均策略。值得注意的是,由此产生的全局模型在个性化中excels作为\ texttt {fgpr}共同学习所有客户端之前的全局$ \ mathcal {gp} $。然后通过利用该本地数据来获得预测后的后退,并在从特定客户端编码个性化功能的本地数据获得。从理论上讲,我们显示\ texttt {fgpr}会聚到完整对数似然函数的关键点,但符合统计误差。通过广泛的案例研究,我们展示了\ TextTT {FGPR}在广泛的应用中擅长,并且是隐私保留多保真数据建模的有希望的方法。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译