对抗训练是一种广泛使用的策略,可以使神经网络具有抵抗对抗性扰动的能力。对于宽度$ m $,$ n $输入培训数据的神经网络,在$ d $ dimension中,需要$ \ omega(MND)$每次培训迭代的时间费用来进行前进和向后计算。在本文中,我们分析了具有转移的Relu激活的两层神经网络上对抗训练程序的收敛保证,并表明每次迭代的每个输入数据都只能激活$ O(M)$神经元。此外,通过应用半空间报告数据结构,我们开发了一种用于对抗培训的算法,以$ O(m n d)$ $ O(m n d)$。
translated by 谷歌翻译
深度学习的成功以巨大的计算和能源成本,而训练大规模过度参数的神经网络的可伸缩性正成为AI进步的真正障碍。尽管传统反向传播通过梯度不错的传统反向传播的流行和低成本,但在理论和实践中,SGD在非凸面设置中具有高度的收敛速度。为了减轻这一成本,最近的工作提议采用替代性(牛顿型)培训方法,但收敛速度更快,尽管其每题成本更高。对于具有$ m = \ mathrm {poly}(n)$参数的典型神经网络,$ n $ datapoints in $ \ mathbb {r}^d $ of $ n $ datapoints的输入批次, Weinstein,ITCS'2021]需要$ \ sim mnd + n^3 $每次迭代。在本文中,我们提出了一种新颖的培训方法,它仅需要$ m^{1- \ alpha} n d + n^3 $摊销时间在同一过度叠加机制中,其中$ \ alpha \ in(0.01,1)$是某些固定常数。此方法依赖于神经网络的新替代视图,作为一组二进制搜索树,每个迭代都对应于修改树中节点的一小部分。我们认为,这种观点将在DNN的设计和分析中进一步应用。
translated by 谷歌翻译
我们考虑培训多层过参数化神经网络的问题,以最大限度地减少损失函数引起的经验风险。在过度参数化的典型设置中,网络宽度$ M $远大于数据维度$ D $和培训数量$ N $($ m = \ mathrm {poly}(n,d)$),其中诱导禁止的大量矩阵$ w \ in \ mathbb {r} ^ {m \ times m} $每层。天真地,一个人必须支付$ O(m ^ 2)$时间读取权重矩阵并评估前向和后向计算中的神经网络功能。在这项工作中,我们展示了如何降低每个迭代的培训成本,具体而言,我们提出了一个仅在初始化阶段使用M ^ 2美元的框架,并且在$ M $的情况下实现了每次迭代的真正子种化成本。 ,$ m ^ {2- \ oomga(1)} $次迭代。为了获得此结果,我们利用各种技术,包括偏移的基于Relu的稀释器,懒惰的低级维护数据结构,快速矩阵矩阵乘法,张量的草图技术和预处理。
translated by 谷歌翻译
联合学习(FL)是一种趋势培训范式,用于利用分散培训数据。 FL允许客户端在本地更新几个时期的模型参数,然后将它们共享到全局模型以进行聚合。在聚集之前,该训练范式具有多本地步骤更新,使对抗性攻击暴露了独特的漏洞。对手训练是一种流行而有效的方法,可以提高网络对抗者的鲁棒性。在这项工作中,我们制定了一种一般形式的联邦对抗学习(FAL),该形式是从集中式环境中的对抗性学习改编而成的。在FL培训的客户端,FAL具有一个内部循环,可以生成对抗性样本进行对抗训练和外循环以更新本地模型参数。在服务器端,FAL汇总了本地模型更新并广播聚合的模型。我们设计了全球强大的训练损失,并将FAL培训作为最小最大优化问题。与依赖梯度方向的经典集中式培训中的收敛分析不同,由于三个原因,很难在FAL中分析FAL的收敛性:1)Min-Max优化的复杂性,2)模型未在梯度方向上更新聚合之前的客户端和3)客户间异质性的多局部更新。我们通过使用适当的梯度近似和耦合技术来应对这些挑战,并在过度参数化的制度中介绍收敛分析。从理论上讲,我们的主要结果表明,我们的算法下的最小损失可以收敛到$ \ epsilon $ Small,并具有所选的学习率和交流回合。值得注意的是,我们的分析对于非IID客户是可行的。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
This work studies training one-hidden-layer overparameterized ReLU networks via gradient descent in the neural tangent kernel (NTK) regime, where, differently from the previous works, the networks' biases are trainable and are initialized to some constant rather than zero. The first set of results of this work characterize the convergence of the network's gradient descent dynamics. Surprisingly, it is shown that the network after sparsification can achieve as fast convergence as the original network. The contribution over previous work is that not only the bias is allowed to be updated by gradient descent under our setting but also a finer analysis is given such that the required width to ensure the network's closeness to its NTK is improved. Secondly, the networks' generalization bound after training is provided. A width-sparsity dependence is presented which yields sparsity-dependent localized Rademacher complexity and a generalization bound matching previous analysis (up to logarithmic factors). As a by-product, if the bias initialization is chosen to be zero, the width requirement improves the previous bound for the shallow networks' generalization. Lastly, since the generalization bound has dependence on the smallest eigenvalue of the limiting NTK and the bounds from previous works yield vacuous generalization, this work further studies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown that trainable biases are necessary, trainable bias helps to identify a nice data-dependent region where a much finer analysis of the NTK's smallest eigenvalue can be conducted, which leads to a much sharper lower bound than the previously known worst-case bound and, consequently, a non-vacuous generalization bound.
translated by 谷歌翻译
训练神经网络的一种常见方法是将所有权重初始化为独立的高斯向量。我们观察到,通过将权重初始化为独立对,每对由两个相同的高斯向量组成,我们可以显着改善收敛分析。虽然已经研究了类似的技术来进行随机输入[Daniely,Neurips 2020],但尚未使用任意输入进行分析。使用此技术,我们展示了如何显着减少两层relu网络所需的神经元数量,均在逻辑损失的参数化设置不足的情况下,大约$ \ gamma^{ - 8} $ [Ji and telgarsky,ICLR, 2020]至$ \ gamma^{ - 2} $,其中$ \ gamma $表示带有神经切线内核的分离边距,以及在与平方损失的过度参数化设置中,从大约$ n^4 $ [song [song]和Yang,2019年]至$ n^2 $,隐含地改善了[Brand,Peng,Song和Weinstein,ITCS 2021]的近期运行时间。对于参数不足的设置,我们还证明了在先前工作时改善的新下限,并且在某些假设下是最好的。
translated by 谷歌翻译
模型提取攻击已经再次兴趣了解来自查询的神经网络的经典问题。在这项工作中,我们给出了学习任意一个隐藏层神经网络激活的第一个多项式时间算法,提供了对网络的黑盒访问。正式,我们表明,如果$ F $是一个具有Relu激活的任意一个隐藏的层神经网络,则存在一个具有Query复杂性和运行时间的算法,这些复杂性和运行时间在所有参数中输出网络$ f'$实现低平方丢失相对达到高斯措施的$ F $。虽然安全文献中的许多作品已经提出和经验证明了某些算法的有效性,但是,即使对于最坏情况的网络,我们也是最完全多项式时间对效率保证的影响(特别是我们的算法在整个算法中取得成功)环境)。
translated by 谷歌翻译
深度分离结果提出了对深度神经网络过较浅的架构的好处的理论解释,建立前者具有卓越的近似能力。然而,没有已知的结果,其中更深的架构利用这种优势成为可提供的优化保证。我们证明,当数据由具有满足某些温和假设的径向对称的分布产生的数据时,梯度下降可以使用具有两层S形激活的深度2神经网络有效地学习球指示器功能,并且隐藏层固定在一起训练。由于众所周知,当使用用单层非线性的深度2网络(Safran和Shamir,2017)使用深度2网络时,球指示器难以近似于一定的重型分配,这建立了我们最好的知识,基于第一优化的分离结果,其中近似架构的近似效益在实践中可怕的。我们的证明技术依赖于随机特征方法,该方法减少了用单个神经元学习的问题,其中新工具需要在数据分布重尾时显示梯度下降的收敛。
translated by 谷歌翻译
现代神经网络通常具有很大的表现力,并且可以接受训练以使培训数据过高,同时仍能达到良好的测试性能。这种现象被称为“良性过度拟合”。最近,从理论角度出现了一系列研究“良性过度拟合”的作品。但是,它们仅限于线性模型或内核/随机特征模型,并且仍然缺乏关于何时以及如何在神经网络中发生过度拟合的理论理解。在本文中,我们研究了训练两层卷积神经网络(CNN)的良性过度拟合现象。我们表明,当信噪比满足一定条件时,通过梯度下降训练的两层CNN可以实现任意小的训练和测试损失。另一方面,当这种情况无法成立时,过度拟合就会有害,并且获得的CNN只能实现恒定的测试损失。这些共同证明了由信噪比驱动的良性过度拟合和有害过度拟合之间的急剧过渡。据我们所知,这是第一部精确地表征良性过度拟合在训练卷积神经网络中的条件的工作。
translated by 谷歌翻译
在这项工作中,我们在两层relu网络中提供了特征学习过程的表征,这些网络在随机初始化后通过梯度下降对逻辑损失进行了训练。我们考虑使用输入功能的XOR样函数生成的二进制标签的数据。我们允许不断的培训标签被对手破坏。我们表明,尽管线性分类器并不比随机猜测我们考虑的分布更好,但通过梯度下降训练的两层relu网络达到了接近标签噪声速率的概括误差。我们开发了一种新颖的证明技术,该技术表明,在初始化时,绝大多数神经元充当随机特征,仅与有用特征无关紧要,而梯度下降动力学则“放大”这些弱,随机的特征到强,有用的特征。
translated by 谷歌翻译
内核密度估计(KDE)在机器学习中脱颖而出。问题是按以下方式定义的:给定的内核函数$ f(x,y)$和一组点$ \ {x_1,x_2,x_2,\ cdots,x_n \} \ subset \ subset \ mathbb {r}^d $,我们想计算$ \ frac {1} {n} \ sum_ {i = 1}^{n} f(x_i,y)$ for任何查询点$ y \ in \ mathbb {r}^d $。最近,将数据结构用于有效KDE的趋势越来越大。但是,提出的KDE数据结构集中在静态设置上。 KDE数据结构在动态变化的数据分布上的鲁棒性没有解决。在这项工作中,我们专注于具有对对抗性查询的KDE数据结构的动态维护。特别是,我们提供了KDE数据结构的理论框架。在我们的框架中,KDE数据结构仅需要次级空间。此外,我们的数据结构支持sublinear时间中数据集的动态更新。此外,我们可以在均匀时间内使用潜在的对手进行自适应查询。
translated by 谷歌翻译
我们研究了$ \ Mathcal {r} $的结构和统计属性 - 规范最小化由特定目标函数标记的数据集的内侧插值。$ \ MATHCAL {R} $ - 标准是两层神经网络的电感偏差的基础,最近引入了捕获网络权重大小的功能效果,与网络宽度无关。我们发现,即使有适合数据的脊函数,这些插值也是本质上的多元功能,而且$ \ Mathcal {r} $ - 规范归纳偏见不足以实现某些学习问题的统计上最佳概括。总的来说,这些结果为与实际神经网络训练有关的感应偏见提供了新的启示。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
良性过度拟合,即插值模型在存在嘈杂数据的情况下很好地推广的现象,首先是在接受梯度下降训练的神经网络模型中观察到的。为了更好地理解这一经验观察,我们考虑了通过梯度下降训练的两层神经网络的概括误差,后者是随机初始化后的逻辑损失。我们假设数据来自分离良好的集体条件对数符合分布,并允许训练标签的持续部分被对手损坏。我们表明,在这种情况下,神经网络表现出良性过度拟合:它们可以驱动到零训练错误,完美拟合所有嘈杂的训练标签,并同时达到最小值最佳测试错误。与以前需要线性或基于内核预测的良性过度拟合的工作相反,我们的分析在模型和学习动力学基本上是非线性的环境中。
translated by 谷歌翻译
神经切线内核(NTK)表征无限宽的神经网络的行为通过梯度下降训练在最小方形损失下训练。最近的作品还报告说,NTK回归可以优于在小型数据集上培训的有限范围的神经网络。然而,内核方法的计算复杂性限制了在大规模学习任务中的使用。为了加速NTK学习,我们设计了NTK的近输入 - 稀疏时间近似算法,通过绘制arc-anine内核的多项式扩展:我们的NTK卷积对应物的草图(CNTK)可以使用线性运行时转换任何图像像素数。此外,通过将随机特征(基于杠杆分数采样)与草图算法组合,我们证明了NTK矩阵的光谱近似保证。我们在各种大规模回归和分类任务上基准于我们的方法,并显示在我们的CNTK特征上培训的线性回归线符合CIFAR-10数据集上精确CNTK的准确性,同时实现了150倍的加速。
translated by 谷歌翻译