我们调查预测中的合奏技术,并检查其使用与Covid-19大流行早期类似的非季度时间系列的潜力。开发改进的预测方法是必不可少的,因为它们在关键阶段为组织和决策者提供数据驱动的决策。我们建议使用后期数据融合,使用两个预测模型的堆叠集合和两个元特征,并在初步预测阶段证明其预测力。最终的集合包括先知和长期短期内存(LSTM)神经网络作为基础模型。基础模型由多层的Perceptron(MLP)组合,考虑到元素,表示与每个基础模型的预测精度最高的相关性。我们进一步表明,包含Meta-Features通常会在七和十四天的两个预测视野中提高集合的预测准确性。该研究强化了以前的工作,并展示了与深层学习模型相结合的传统统计模型的价值,以生产更多来自不同领域和季节性的时间序列的预测模型。
translated by 谷歌翻译
杂交和集合学习技术是改善预测方法的预测能力的流行模型融合技术。通过有限的研究,将这两种有前途的方法结合在一起,本文着重于不同合奏的基础模型池中指数平滑的旋转神经网络(ES-RNN)的实用性。我们将某些最先进的结合技术和算术模型平均作为基准进行比较。我们对M4预测数据集进行了100,000个时间序列,结果表明,基于特征的预测模型平均(FFORFORA)平均是与ES-RNN的晚期数据融合的最佳技术。但是,考虑到M4的每日数据子集,堆叠是处理所有基本模型性能相似的情况下唯一成功的合奏。我们的实验结果表明,与N-Beats作为基准相比,我们达到了艺术的预测结果。我们得出的结论是,模型平均比模型选择和堆叠策略更强大。此外,结果表明,提高梯度对于实施合奏学习策略是优越的。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
随着Covid-19影响每个国家的全球和改变日常生活,预测疾病的传播的能力比任何先前的流行病更重要。常规的疾病 - 展开建模方法,隔间模型,基于对病毒的扩散的时空均匀性的假设,这可能导致预测到欠低,特别是在高空间分辨率下。本文采用替代技术 - 时空机器学习方法。我们提出了Covid-LSTM,一种基于长期短期内存深度学习架构的数据驱动模型,用于预测Covid-19在美国县级的发病率。我们使用每周数量的新阳性案例作为时间输入,以及来自Facebook运动和连通数据集的手工工程空间特征,以捕捉时间和空间的疾病的传播。 Covid-LSTM在我们的17周的评估期间优于Covid-19预测集线器集合模型(CovidHub-Ensemble),使其首先比一个或多个预测期更准确的模型。在4周的预测地平线上,我们的型号平均每县平均50例比CovidHub-Ensemble更准确。我们强调,在Covid-19之前,在Covid-19之前的数据驱动预测的未充分利用疾病传播的预测可能是由于以前疾病缺乏足够的数据,除了最近的时尚预测方法的机器学习方法的进步。我们讨论了更广泛的数据驱动预测的障碍,以及将来将使用更多的基于学习的模型。
translated by 谷歌翻译
短期负荷预测(STLF)由于复杂的时间序列(TS)是一种表达三个季节性模式和非线性趋势的挑战。本文提出了一种新的混合分层深度学习模型,涉及多个季节性,并产生两点预测和预测间隔(PIS)。它结合了指数平滑(ES)和经常性神经网络(RNN)。 ES动态提取每个单独的TS的主要组件,并启用在飞行的临时化,这在相对较小的数据集上操作时特别有用。多层RNN配备了一种新型扩张的经常性电池,旨在有效地模拟TS中的短期和长期依赖性。为了改善内部TS表示,因此模型的性能,RNN同时学习ES参数和主要映射函数将输入转换为预测。我们比较我们对几种基线方法的方法,包括古典统计方法和机器学习(ML)方法,在35个欧洲国家的STLF问题。实证研究清楚地表明,该模型具有高表现力,以解决非线性随机预测问题,包括多个季节性和显着的随机波动。实际上,它在准确性方面优于统计和最先进的ML模型。
translated by 谷歌翻译
在本文中,我们呈现SSDNet,这是一个新的时间序列预测的深层学习方法。SSDNet将变压器架构与状态空间模型相结合,提供概率和可解释的预测,包括趋势和季节性成分以及前一步对预测很重要。变压器架构用于学习时间模式并直接有效地估计状态空间模型的参数,而无需对卡尔曼滤波器的需要。我们全面评估了SSDNET在五个数据集上的性能,显示SSDNet是一种有效的方法,可在准确性和速度,优于最先进的深度学习和统计方法方面是一种有效的方法,能够提供有意义的趋势和季节性组件。
translated by 谷歌翻译
We investigate ensemble methods for prediction in an online setting. Unlike all the literature in ensembling, for the first time, we introduce a new approach using a meta learner that effectively combines the base model predictions via using a superset of the features that is the union of the base models' feature vectors instead of the predictions themselves. Here, our model does not use the predictions of the base models as inputs to a machine learning algorithm, but choose the best possible combination at each time step based on the state of the problem. We explore three different constraint spaces for the ensembling of the base learners that linearly combines the base predictions, which are convex combinations where the components of the ensembling vector are all nonnegative and sum up to 1; affine combinations where the weight vector components are required to sum up to 1; and the unconstrained combinations where the components are free to take any real value. The constraints are both theoretically analyzed under known statistics and integrated into the learning procedure of the meta learner as a part of the optimization in an automated manner. To show the practical efficiency of the proposed method, we employ a gradient-boosted decision tree and a multi-layer perceptron separately as the meta learners. Our framework is generic so that one can use other machine learning architectures as the ensembler as long as they allow for a custom differentiable loss for minimization. We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets, extensively used in the well-known data competitions. Furthermore, we openly share the source code of the proposed method to facilitate further research and comparison.
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
我们基准了一个简单学习模型的亚季节预测工具包,该工具包优于操作实践和最先进的机器学习和深度学习方法。这些模型,由Mouatadid等人引入。 (2022),包括(a)气候++,这是气候学的一种适应性替代品,对于降水而言,准确性9%,比美国运营气候预测系统(CFSV2)高9%,熟练250%; (b)CFSV2 ++,一种学习的CFSV2校正,可将温度和降水精度提高7-8%,技能提高50-275%; (c)持久性++是一种增强的持久性模型,将CFSV2预测与滞后测量相结合,以将温度和降水精度提高6-9%,技能提高40-130%。在整个美国,气候++,CFSV2 ++和持久性++工具包始终优于标准气象基准,最先进的机器和深度学习方法,以及欧洲中等范围的天气预报集合中心。
translated by 谷歌翻译
间歇时间序列的分层预测是研究和实证研究中的挑战。庞大的研究侧重于提高每个层次结构的准确性,尤其是底部层次的间歇时间序列。然后,在每个层次结构上调和预测,以进一步提高整体性能。在本文中,我们提出了一种与分层对准方法的预测,该方法将底部水平预测视为可变的柔和预测,以确保在层次结构的上层上的预测精度。我们采用纯深度学习预测方法的N- BEATS对高层的连续时间序列和广泛使用的基于树的算法LightGBM为底层间歇时间序列。具有对准方法的分层预测是自下而上方法的简单且有效的变体,其占难以观察到底部水平的偏差。它允许在较低级别的次优预测保留更高的整体性能。该研究在本实证研究中由第一作者在M5预测准确性竞争期间开发,排名第二。该方法也是良好的商业战略规划有益。
translated by 谷歌翻译
Platelet products are both expensive and have very short shelf lives. As usage rates for platelets are highly variable, the effective management of platelet demand and supply is very important yet challenging. The primary goal of this paper is to present an efficient forecasting model for platelet demand at Canadian Blood Services (CBS). To accomplish this goal, four different demand forecasting methods, ARIMA (Auto Regressive Moving Average), Prophet, lasso regression (least absolute shrinkage and selection operator) and LSTM (Long Short-Term Memory) networks are utilized and evaluated. We use a large clinical dataset for a centralized blood distribution centre for four hospitals in Hamilton, Ontario, spanning from 2010 to 2018 and consisting of daily platelet transfusions along with information such as the product specifications, the recipients' characteristics, and the recipients' laboratory test results. This study is the first to utilize different methods from statistical time series models to data-driven regression and a machine learning technique for platelet transfusion using clinical predictors and with different amounts of data. We find that the multivariate approaches have the highest accuracy in general, however, if sufficient data are available, a simpler time series approach such as ARIMA appears to be sufficient. We also comment on the approach to choose clinical indicators (inputs) for the multivariate models.
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
特征提取方法有助于降低维度并捕获相关信息。在时间序列预测(TSF)中,功能可以用作辅助信息,以实现更好的准确性。传统上,TSF中使用的功能是手工制作的,需要域知识和重要的数据工程工作。在这项研究中,我们首先介绍了静态和动态功能的概念,然后使我们能够开发自主功能,以检索不需要域知识的静态特征(FRAN)的自动回归网络(FRAN)。该方法基于CNN分类器,该分类器经过训练,可以为每个系列创建一个集体和独特的类表示,要么是从该系列的部分中或(如果可以使用的类标签),从一组同一类中。它允许以相似的行为区分序列,但要从不同的类别中进行区分,并使从分类器提取的特征具有最大歧视性。我们探讨了我们功能的解释性,并评估预测元学习环境中该方法的预测能力。我们的结果表明,在大多数情况下,我们的功能会提高准确性。一旦训练,我们的方法就会创建比统计方法快的阶数级级。
translated by 谷歌翻译
对于长期来说,研究人员一直在开发可靠而准确的股票价格预测预测模型。根据文献,如果预测模型是正确的设计和精炼,他们可以煞费苦心地和忠实地估计未来的库存价值。本文展示了一组时间序列,计量经济性和各种基于学习的股票价格预测模型。在此处使用来自2004年1月至2019年12月至2019年12月的Infosys,Icici和Sun Pharma的数据用于培训和测试模型,以了解哪种模型在哪个部门中表现最佳。一个时间序列模型(Holt-Winters指数平滑),一个计量计量模型(Arima),两台机器学习模型(随机林和火星),以及两种深度学习的模型(简单的RNN和LSTM)已被列入本文。火星已被证明是最好的执行机器学习模式,而LSTM已被证明是表现最好的深层学习模式。但总体而言,对于所有三个部门 - 它(在Infosys数据上),银行业务(在ICICI数据)和健康(在Sun Pharma数据上),Mars已被证明是销售预测中最佳表现模式。
translated by 谷歌翻译
分布式的小型太阳能光伏(PV)系统正在以快速增加的速度安装。这可能会对分销网络和能源市场产生重大影响。结果,在不同时间分辨率和视野中,非常需要改善对这些系统发电的预测。但是,预测模型的性能取决于分辨率和地平线。在这种情况下,将多个模型的预测结合到单个预测中的预测组合(合奏)可能是鲁棒的。因此,在本文中,我们提供了对五个最先进的预测模型的性能以及在多个分辨率和视野下的现有预测组合的比较和见解。我们提出了一种基于粒子群优化(PSO)的预测组合方法,该方法将通过加权单个模型产生的预测来使预报掌握能够为手头的任务产生准确的预测。此外,我们将提出的组合方法的性能与现有的预测组合方法进行了比较。使用现实世界中的PV电源数据集进行了全面的评估,该数据集在美国三个位置的25个房屋中测得。在四种不同的分辨率和四个不同视野之间的结果表明,基于PSO的预测组合方法的表现优于使用任何单独的预测模型和其他预测组合的使用,而平均平均绝对规模误差降低了3.81%,而最佳性能则最佳性能单个个人模型。我们的方法使太阳预报员能够为其应用产生准确的预测,而不管预测分辨率或视野如何。
translated by 谷歌翻译
预测时间序列数据代表了数据科学和知识发现研究的新兴领域,其广泛应用程序从股票价格和能源需求预测到早期预测流行病。在过去的五十年中,已经提出了许多统计和机器学习方法,对高质量和可靠预测的需求。但是,在现实生活中的预测问题中,存在基于上述范式之一的模型是可取的。因此,需要混合解决方案来弥合经典预测方法与现代神经网络模型之间的差距。在这种情况下,我们介绍了一个概率自回归神经网络(PARNN)模型,该模型可以处理各种复杂的时间序列数据(例如,非线性,非季节性,远程依赖性和非平稳性)。拟议的PARNN模型是通过建立综合运动平均值和自回归神经网络的融合来构建的,以保持个人的解释性,可伸缩性和``白色盒子样''的预测行为。通过考虑相关的马尔可夫链的渐近行为,获得了渐近平稳性和几何形状的足够条件。与先进的深度学习工具不同,基于预测间隔的PARNN模型的不确定性量化。在计算实验期间,Parnn在各种各样的现实世界数据集中,超过了标准统计,机器学习和深度学习模型(例如,变形金刚,Nbeats,Deepar等),来自宏观经济学,旅游,能源,流行病学和其他人的真实数据集集合 - 期,中期和长期预测。与最先进的预报相比,与最佳方法相比,与最佳方法进行了多重比较,以展示该提案的优越性。
translated by 谷歌翻译
目前,Covid-19的发展使研究人员可以收集2年内积累的数据集并将其用于预测分析。反过来,这可以评估更复杂的预测模型的效率潜力,包括具有不同预测范围的神经网络。在本文中,我们介绍了基于两个国家的区域数据:美国和俄罗斯的区域数据,对不同类型的方法进行了一致的比较研究结果。我们使用了众所周知的统计方法(例如,指数平滑),一种“明天”方法,以及一套经过来自各个地区数据的经典机器学习模型。与他们一起,考虑了基于长期记忆(LSTM)层的神经网络模型,这些培训样本的培训样本汇总了来自两个国家 /地区的所有地区:美国和俄罗斯。根据MAPE度量,使用交叉验证进行效率评估。结果表明,对于以确认的每日案例数量大幅增加的复杂时期,最佳结果是由在两国所有地区训练的LSTM模型显示的,显示平均平均绝对百分比误差(MAPE)为18%在俄罗斯为30%,37%,31%,41%,50%的预测范围为14、28和42天。
translated by 谷歌翻译