间歇时间序列的分层预测是研究和实证研究中的挑战。庞大的研究侧重于提高每个层次结构的准确性,尤其是底部层次的间歇时间序列。然后,在每个层次结构上调和预测,以进一步提高整体性能。在本文中,我们提出了一种与分层对准方法的预测,该方法将底部水平预测视为可变的柔和预测,以确保在层次结构的上层上的预测精度。我们采用纯深度学习预测方法的N- BEATS对高层的连续时间序列和广泛使用的基于树的算法LightGBM为底层间歇时间序列。具有对准方法的分层预测是自下而上方法的简单且有效的变体,其占难以观察到底部水平的偏差。它允许在较低级别的次优预测保留更高的整体性能。该研究在本实证研究中由第一作者在M5预测准确性竞争期间开发,排名第二。该方法也是良好的商业战略规划有益。
translated by 谷歌翻译
杂交和集合学习技术是改善预测方法的预测能力的流行模型融合技术。通过有限的研究,将这两种有前途的方法结合在一起,本文着重于不同合奏的基础模型池中指数平滑的旋转神经网络(ES-RNN)的实用性。我们将某些最先进的结合技术和算术模型平均作为基准进行比较。我们对M4预测数据集进行了100,000个时间序列,结果表明,基于特征的预测模型平均(FFORFORA)平均是与ES-RNN的晚期数据融合的最佳技术。但是,考虑到M4的每日数据子集,堆叠是处理所有基本模型性能相似的情况下唯一成功的合奏。我们的实验结果表明,与N-Beats作为基准相比,我们达到了艺术的预测结果。我们得出的结论是,模型平均比模型选择和堆叠策略更强大。此外,结果表明,提高梯度对于实施合奏学习策略是优越的。
translated by 谷歌翻译
当时间序列具有自然组结构时,出现分层预测问题,并且需要在多个聚集水平和对组中分类的预测。在这些问题中,通常希望满足给定层次结构中的聚合约束,称为文献中的分层一致性。在生产准确的预测的同时保持层次连贯可能是一个具有挑战性的问题,特别是在概率预测的情况下。我们提出了一种能够对等级序列准确和相干的概率预测的新方法。我们称之为Deep Poisson混合网络(DPMN)。它依赖于神经网络的组合和用于分层多变量时间序列结构的关节分布的统计模型。通过施工,模型可确保分层一致性,并为预测分布的聚集和分解提供简单的规则。我们进行广泛的实证评估,将DPMN与其他最先进的方法进行比较,该方法在多个公共数据集上产生分层相干的概率预测。与现有的相干概率模型相比,我们在澳大利亚国内旅游数据的总体连续排名概率评分(CRP)的总体连续排名概率评分(CRP)的相对改善,24.2位于青年杂货店销售数据集中,6.9%在旧金山湾区公路交通数据集。
translated by 谷歌翻译
Generalizability of time series forecasting models depends on the quality of model selection. Temporal cross validation (TCV) is a standard technique to perform model selection in forecasting tasks. TCV sequentially partitions the training time series into train and validation windows, and performs hyperparameter optmization (HPO) of the forecast model to select the model with the best validation performance. Model selection with TCV often leads to poor test performance when the test data distribution differs from that of the validation data. We propose a novel model selection method, H-Pro that exploits the data hierarchy often associated with a time series dataset. Generally, the aggregated data at the higher levels of the hierarchy show better predictability and more consistency compared to the bottom-level data which is more sparse and (sometimes) intermittent. H-Pro performs the HPO of the lowest-level student model based on the test proxy forecasts obtained from a set of teacher models at higher levels in the hierarchy. The consistency of the teachers' proxy forecasts help select better student models at the lowest-level. We perform extensive empirical studies on multiple datasets to validate the efficacy of the proposed method. H-Pro along with off-the-shelf forecasting models outperform existing state-of-the-art forecasting methods including the winning models of the M5 point-forecasting competition.
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
我们介绍了称为\ texttt {mecats}的异构专家框架的混合,其同时预测通过聚合层次结构相关的一组时间序列的值。不同类型的预测模型可以作为个别专家使用,以便可以根据相应时间序列的性质来定制每个模型的形式。 \ TextTt {Mecats}在培训阶段期间了解分层关系,以帮助概括在被建模的所有时间序列中更好地提高,并且还减轻了由于层次结构施加的约束而产生的一致性问题。我们进一步在点预测的顶部构建多个分位数估计值。由此产生的概率预测几乎是连贯的,无分布的,并且独立于预测模型的选择。我们对两点和概率预测进行了全面的评估,并制定了序列数据中存在变化点的情况的扩展。通常,我们的方法是强大的,适用于具有不同特性的数据集,对大规模预测管道具有高度可配置和高效的。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.
translated by 谷歌翻译
在时间序列预测的背景下,常用做法是评估多种方法,并选择其中一种方法或用于产生最佳预测的合奏。然而,在多种方法中选择不同的集合仍然是当方法的数量增加时,仍然是经历组合爆炸的具有挑战性的任务。在需求预测或收入预测的背景下,这一挑战在大量时间序列以及由于不断变化的业务环境而获得的有限的历史数据点,进一步加剧。虽然深入学习预测方法旨在同时预测大量时间序列,但由于有限的历史可用,可能不会产生理想的结果,它们变得挑战。我们提出了一种通过在使用交叉验证的潜在时间序列上组合低级时间矩阵分解和最佳模型选择来预测短高维时间序列数据的框架。我们展示预测潜在因子与直接应用于时间序列的不同UNI变化模型相比,潜在因子导致显着的性能提升。在M4月数据集的截断版本上验证了性能,其中包含来自来自多个域的时间序列数据,显示该方法的一般适用性。此外,由于在将预测方法直接应用于高维数据集时通常是不切实际的潜在因子而言,可以将未来的分析师视图纳入未来的分析师观。
translated by 谷歌翻译
我们在在线环境中研究了非线性预测,并引入了混合模型,该模型通过端到端体系结构有效地减轻了对手工设计的功能的需求和传统非线性预测/回归方法的手动模型选择问题。特别是,我们使用递归结构从顺序信号中提取特征,同时保留状态信息,即历史记录和增强决策树以产生最终输出。该连接是以端到端方式的,我们使用随机梯度下降共同优化整个体系结构,我们还为此提供了向后的通过更新方程。特别是,我们采用了一个经常性的神经网络(LSTM)来从顺序数据中提取自适应特征,并提取梯度增强机械(Soft GBDT),以进行有效的监督回归。我们的框架是通用的,因此可以使用其他深度学习体系结构进行特征提取(例如RNN和GRU)和机器学习算法进行决策,只要它们是可区分的。我们证明了算法对合成数据的学习行为以及各种现实生活数据集对常规方法的显着性能改进。此外,我们公开分享提出的方法的源代码,以促进进一步的研究。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
我们调查预测中的合奏技术,并检查其使用与Covid-19大流行早期类似的非季度时间系列的潜力。开发改进的预测方法是必不可少的,因为它们在关键阶段为组织和决策者提供数据驱动的决策。我们建议使用后期数据融合,使用两个预测模型的堆叠集合和两个元特征,并在初步预测阶段证明其预测力。最终的集合包括先知和长期短期内存(LSTM)神经网络作为基础模型。基础模型由多层的Perceptron(MLP)组合,考虑到元素,表示与每个基础模型的预测精度最高的相关性。我们进一步表明,包含Meta-Features通常会在七和十四天的两个预测视野中提高集合的预测准确性。该研究强化了以前的工作,并展示了与深层学习模型相结合的传统统计模型的价值,以生产更多来自不同领域和季节性的时间序列的预测模型。
translated by 谷歌翻译
已经显示混合方法以在预测任务中以纯粹的统计和纯粹的深度学习方法优于预测,并定量与这些预测(预测间隔)的相关不确定性。一个示例是指数平滑复发性神经网络(ES-RNN),统计预测模型和经常性神经网络变体之间的混合。 ES-RNN在Makridakis-4预测竞争中实现了9.4 \%的绝对错误。这种改进和类似的混合模型的表现主要是仅在单变量数据集上展示。将混合预测方法应用于多变量数据的困难包括($ i $)的高参数调整所涉及的高计算成本,用于与数据中固有的自动关联相关的模型(II $)挑战,以及( $ iii $)在可能难以捕获的协变量之间的复杂依赖(交叉相关)。本文介绍了多变量指数平滑的长短短期记忆(MES-LSTM),对ES-RNN的广义多元扩展,克服了这些挑战。 MES-LSTM利用了矢量化实现。我们在2019年(Covid-19)发病率数据集的几种聚集冠状病毒病中测试MES-LSTM,并发现我们的混合方法在预测准确性和预测间隔建设下对纯统计和深度学习方法进行了一致的,显着改善。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
我们基准了一个简单学习模型的亚季节预测工具包,该工具包优于操作实践和最先进的机器学习和深度学习方法。这些模型,由Mouatadid等人引入。 (2022),包括(a)气候++,这是气候学的一种适应性替代品,对于降水而言,准确性9%,比美国运营气候预测系统(CFSV2)高9%,熟练250%; (b)CFSV2 ++,一种学习的CFSV2校正,可将温度和降水精度提高7-8%,技能提高50-275%; (c)持久性++是一种增强的持久性模型,将CFSV2预测与滞后测量相结合,以将温度和降水精度提高6-9%,技能提高40-130%。在整个美国,气候++,CFSV2 ++和持久性++工具包始终优于标准气象基准,最先进的机器和深度学习方法,以及欧洲中等范围的天气预报集合中心。
translated by 谷歌翻译
Multivariate time series forecasting with hierarchical structure is pervasive in real-world applications, demanding not only predicting each level of the hierarchy, but also reconciling all forecasts to ensure coherency, i.e., the forecasts should satisfy the hierarchical aggregation constraints. Moreover, the disparities of statistical characteristics between levels can be huge, worsened by non-Gaussian distributions and non-linear correlations. To this extent, we propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation, to represent complex data distribution while simultaneously reconciling the forecasts to ensure coherency. Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step. In addition, by harnessing the power of deep model, we do not rely on any assumption such as unbiased estimates or Gaussian distribution. Our evaluation experiments are conducted on four real-world hierarchical datasets from different industrial domains (three public ones and a dataset from the application servers of Alipay's data center) and the preliminary results demonstrate efficacy of our proposed method.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
发达的ET(指数平滑或误差,趋势,季节性)方法在状态空间表示中纳入了指数平滑模型家族,已广泛用于自动预测。现有的ETS方法使用信息标准来选择模型选择,通过在适用于给定时间序列的所有模型中选择具有最小信息标准的最佳模型。当应用于大规模时间序列数据时,这种模型选择方案下的ETS方法会遭受计算复杂性。为了解决此问题,我们通过模拟数据上的培训分类器提出了一种有效的ETS模型选择方法,以预测给定时间序列的适当模型组件形式。我们提供了一项模拟研究,以显示模拟数据中提出的方法的模型选择能力。我们根据点预测和预测间隔,对广泛使用的预测竞争数据集M4评估我们的方法。为了证明我们方法的实际价值,我们在每月医院数据集上展示了方法的绩效改进。
translated by 谷歌翻译