对于长期来说,研究人员一直在开发可靠而准确的股票价格预测预测模型。根据文献,如果预测模型是正确的设计和精炼,他们可以煞费苦心地和忠实地估计未来的库存价值。本文展示了一组时间序列,计量经济性和各种基于学习的股票价格预测模型。在此处使用来自2004年1月至2019年12月至2019年12月的Infosys,Icici和Sun Pharma的数据用于培训和测试模型,以了解哪种模型在哪个部门中表现最佳。一个时间序列模型(Holt-Winters指数平滑),一个计量计量模型(Arima),两台机器学习模型(随机林和火星),以及两种深度学习的模型(简单的RNN和LSTM)已被列入本文。火星已被证明是最好的执行机器学习模式,而LSTM已被证明是表现最好的深层学习模式。但总体而言,对于所有三个部门 - 它(在Infosys数据上),银行业务(在ICICI数据)和健康(在Sun Pharma数据上),Mars已被证明是销售预测中最佳表现模式。
translated by 谷歌翻译
准确预测未来股票价格的预测模型设计一直被认为是一个有趣和具有挑战性的研究问题。由于现实世界中的股价波动和随机性质,这项任务变得复杂,这是受许多可控和无法控制的变量的影响。本文介绍了一个优化的预测模型,内置于长期内存(LSTM)架构,用于自动从网上从网站上提取过去的时间间隔,并预测其未来的指定预测地平线的价格,并预测未来股票价格。该模型部署以根据其在印度国家证券交易所(NSE)中列出的70个不同部门的70个重要股票的预测结果,以便根据其预测结果。每个部门的盈利能力基于该部门的股票在2010年1月1日至8月26日2021年8月26日的股票所产生的总利润来源。该部门基于其盈利价值。还针对每个扇区评估模型的预测精度。结果表明,该模型在预测未来股票价格方面非常准确。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
Platelet products are both expensive and have very short shelf lives. As usage rates for platelets are highly variable, the effective management of platelet demand and supply is very important yet challenging. The primary goal of this paper is to present an efficient forecasting model for platelet demand at Canadian Blood Services (CBS). To accomplish this goal, four different demand forecasting methods, ARIMA (Auto Regressive Moving Average), Prophet, lasso regression (least absolute shrinkage and selection operator) and LSTM (Long Short-Term Memory) networks are utilized and evaluated. We use a large clinical dataset for a centralized blood distribution centre for four hospitals in Hamilton, Ontario, spanning from 2010 to 2018 and consisting of daily platelet transfusions along with information such as the product specifications, the recipients' characteristics, and the recipients' laboratory test results. This study is the first to utilize different methods from statistical time series models to data-driven regression and a machine learning technique for platelet transfusion using clinical predictors and with different amounts of data. We find that the multivariate approaches have the highest accuracy in general, however, if sufficient data are available, a simpler time series approach such as ARIMA appears to be sufficient. We also comment on the approach to choose clinical indicators (inputs) for the multivariate models.
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
预测未来股价及其运动模式是一个复杂的问题。因此,使用预测的价格构建资本资产组合,以实现其返回与风险之间的优化是一个更加艰巨的任务。这项工作已经分析了2016年1月1日至2020年12月31日从印度股市中排名前五个不同部门的历史价格的时间序列的分析。为每个人建造了最佳投资组合行业。为了预测未来的股票价格,还设计和微调了长短短期内存(LSTM)模型。在投资组合建设五个月后,计算每个投资组合的实际回报和风险。发现每个投资组合的预测和实际返回都是高的,表示LSTM模型的高精度。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
电力是一种波动的电源,需要短期和长期的精力计划和资源管理。更具体地说,在短期,准确的即时能源消耗中,预测极大地提高了建筑物的效率,为采用可再生能源提供了新的途径。在这方面,数据驱动的方法,即基于机器学习的方法,开始优先于更传统的方法,因为它们不仅提供了更简化的部署方式,而且还提供了最新的结果。从这个意义上讲,这项工作应用和比较了几种深度学习算法,LSTM,CNN,CNN-LSTM和TCN的性能,在制造业内的一个真实测试中。实验结果表明,TCN是预测短期即时能源消耗的最可靠方法。
translated by 谷歌翻译
股票市场是一个网络,为几乎所有主要的经济交易提供平台。虽然投资股票市场是一个好主意,但对单个股票进行投资可能不是一个好主意,尤其是对于休闲投资者而言。智能储备需要深入研究和大量奉献精神。预测这种股票价值提供了巨大的套利利润机会。找到解决方案的这种吸引力促使研究人员找到了过去的问题,例如波动,季节性和时间依赖时间。本文调查了自然语言处理和机器学习技术领域的最新文献,用于预测股票市场的发展。本文的主要贡献包括许多最近的文章的复杂分类以及股票市场预测研究及其相关领域的最新研究趋势。
translated by 谷歌翻译
短期负荷预测(STLF)由于复杂的时间序列(TS)是一种表达三个季节性模式和非线性趋势的挑战。本文提出了一种新的混合分层深度学习模型,涉及多个季节性,并产生两点预测和预测间隔(PIS)。它结合了指数平滑(ES)和经常性神经网络(RNN)。 ES动态提取每个单独的TS的主要组件,并启用在飞行的临时化,这在相对较小的数据集上操作时特别有用。多层RNN配备了一种新型扩张的经常性电池,旨在有效地模拟TS中的短期和长期依赖性。为了改善内部TS表示,因此模型的性能,RNN同时学习ES参数和主要映射函数将输入转换为预测。我们比较我们对几种基线方法的方法,包括古典统计方法和机器学习(ML)方法,在35个欧洲国家的STLF问题。实证研究清楚地表明,该模型具有高表现力,以解决非线性随机预测问题,包括多个季节性和显着的随机波动。实际上,它在准确性方面优于统计和最先进的ML模型。
translated by 谷歌翻译
在现代资本市场中,由于各种社会,财务,政治和其他动态因素,股票的价格通常被认为是高度波动和不可预测的。借助计算和周到的投资,股票市场可以通过最少的资本投资来确保可观的利润,而错误的预测可以轻松地为投资者带来灾难性的财务损失。本文介绍了最近引入的机器学习模型 - 变压器模型的应用,以预测孟加拉国领先的证券交易所达卡证券交易所(DSE)的未来价格。变压器模型已被广泛用于自然语言处理和计算机视觉任务,但据我们所知,从未在DSE进行股票价格预测任务。最近,介绍了代表时间序列功能的Time2VEC编码,使得可以采用变压器模型进行股票价格预测。本文集中于基于变压器的模型的应用,以根据其历史和每周的数据来预测DSE中列出的八个特定股票的价格转移。我们的实验证明了大多数股票的有希望的结果和可接受的根平方误差。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
制定准确的旅游预测模型对于为旅游管理做出理想的政策决策至关重要。早期研究旅游管理专注于发现与旅游需求相关的外部因素。最近的研究利用深度学习随需需求预测以及这些外部因素。它们主要使用递归神经网络模型,例如LSTM和RNN的框架。然而,这些模型不适合用于预测旅游需求。这是因为旅游需求受到各种外部因素变化的强烈影响,递归神经网络模型在处理这些多变量输入方面具有限制。我们提出了一种多主题CNN模型(MHAC),用于解决这些限制。 MHAC使用1D卷积神经网络来分析时间模式和注意机制,以反映输入变量之间的相关性。该模型可以从各种变量的时间序列数据中提取空间特征。我们通过考虑韩国文化的政治,疾病,季节和吸引力等外部因素,应用我们的预测框架来预测韩国的入境旅游变化。广泛实验的性能结果表明,我们的方法优于韩国旅游预测的其他基于深受学习的预测框架。
translated by 谷歌翻译
Forecasting time series with extreme events has been a challenging and prevalent research topic, especially when the time series data are affected by complicated uncertain factors, such as is the case in hydrologic prediction. Diverse traditional and deep learning models have been applied to discover the nonlinear relationships and recognize the complex patterns in these types of data. However, existing methods usually ignore the negative influence of imbalanced data, or severe events, on model training. Moreover, methods are usually evaluated on a small number of generally well-behaved time series, which does not show their ability to generalize. To tackle these issues, we propose a novel probability-enhanced neural network model, called NEC+, which concurrently learns extreme and normal prediction functions and a way to choose among them via selective back propagation. We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California. Experimental results demonstrate that the proposed model significantly outperforms state-of-the-art baselines and exhibits superior generalization ability on data with diverse distributions.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
The time-series forecasting (TSF) problem is a traditional problem in the field of artificial intelligence. Models such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), and GRU (Gate Recurrent Units) have contributed to improving the predictive accuracy of TSF. Furthermore, model structures have been proposed to combine time-series decomposition methods, such as seasonal-trend decomposition using Loess (STL) to ensure improved predictive accuracy. However, because this approach is learned in an independent model for each component, it cannot learn the relationships between time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using five univariate time-series datasets and four multivariate time-series data. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results show that the proposed CRU is an excellent method for TSF problems compared to other neural architectures.
translated by 谷歌翻译
我们调查预测中的合奏技术,并检查其使用与Covid-19大流行早期类似的非季度时间系列的潜力。开发改进的预测方法是必不可少的,因为它们在关键阶段为组织和决策者提供数据驱动的决策。我们建议使用后期数据融合,使用两个预测模型的堆叠集合和两个元特征,并在初步预测阶段证明其预测力。最终的集合包括先知和长期短期内存(LSTM)神经网络作为基础模型。基础模型由多层的Perceptron(MLP)组合,考虑到元素,表示与每个基础模型的预测精度最高的相关性。我们进一步表明,包含Meta-Features通常会在七和十四天的两个预测视野中提高集合的预测准确性。该研究强化了以前的工作,并展示了与深层学习模型相结合的传统统计模型的价值,以生产更多来自不同领域和季节性的时间序列的预测模型。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
衡量全球经济均衡的定量指标与农业供应链和国际贸易流量具有强大而相互依存的关系。这些过程中的突然震动由贸易战争,流行病或天气等异常事件造成的,可能对全球经济具有复杂影响。在本文中,我们提出了一种新颖的框架,即:Depeag,采用经济学,使用深度学习(DL)来测量异常事件检测的影响,以确定普通财务指数(如Dowjones)之间的关系,以及生产价值农产品(如奶酪和牛奶)。我们使用称为长期内存(LSTM)网络的DL技术成功地预测商品生产,高精度,也是五个流行的模型(回归和提升)作为基准,以测量异常事件的影响。结果表明,具有异常值的考虑因素(使用隔离林)优于基线模型的Depeag,以及具有异常值检测的相同模型。在预测财务指标预测商品生产时,异常事件会产生相当大的影响。此外,我们展示了Deepag对公共政策的影响,为政策制定者和农民提供了洞察力,以及农业生态系统的运作决策。收集数据,模型开发,并记录和呈现结果。
translated by 谷歌翻译