预测未来股价及其运动模式是一个复杂的问题。因此,使用预测的价格构建资本资产组合,以实现其返回与风险之间的优化是一个更加艰巨的任务。这项工作已经分析了2016年1月1日至2020年12月31日从印度股市中排名前五个不同部门的历史价格的时间序列的分析。为每个人建造了最佳投资组合行业。为了预测未来的股票价格,还设计和微调了长短短期内存(LSTM)模型。在投资组合建设五个月后,计算每个投资组合的实际回报和风险。发现每个投资组合的预测和实际返回都是高的,表示LSTM模型的高精度。
translated by 谷歌翻译
准确预测未来股票价格的预测模型设计一直被认为是一个有趣和具有挑战性的研究问题。由于现实世界中的股价波动和随机性质,这项任务变得复杂,这是受许多可控和无法控制的变量的影响。本文介绍了一个优化的预测模型,内置于长期内存(LSTM)架构,用于自动从网上从网站上提取过去的时间间隔,并预测其未来的指定预测地平线的价格,并预测未来股票价格。该模型部署以根据其在印度国家证券交易所(NSE)中列出的70个不同部门的70个重要股票的预测结果,以便根据其预测结果。每个部门的盈利能力基于该部门的股票在2010年1月1日至8月26日2021年8月26日的股票所产生的总利润来源。该部门基于其盈利价值。还针对每个扇区评估模型的预测精度。结果表明,该模型在预测未来股票价格方面非常准确。
translated by 谷歌翻译
对于长期来说,研究人员一直在开发可靠而准确的股票价格预测预测模型。根据文献,如果预测模型是正确的设计和精炼,他们可以煞费苦心地和忠实地估计未来的库存价值。本文展示了一组时间序列,计量经济性和各种基于学习的股票价格预测模型。在此处使用来自2004年1月至2019年12月至2019年12月的Infosys,Icici和Sun Pharma的数据用于培训和测试模型,以了解哪种模型在哪个部门中表现最佳。一个时间序列模型(Holt-Winters指数平滑),一个计量计量模型(Arima),两台机器学习模型(随机林和火星),以及两种深度学习的模型(简单的RNN和LSTM)已被列入本文。火星已被证明是最好的执行机器学习模式,而LSTM已被证明是表现最好的深层学习模式。但总体而言,对于所有三个部门 - 它(在Infosys数据上),银行业务(在ICICI数据)和健康(在Sun Pharma数据上),Mars已被证明是销售预测中最佳表现模式。
translated by 谷歌翻译
在现代资本市场中,由于各种社会,财务,政治和其他动态因素,股票的价格通常被认为是高度波动和不可预测的。借助计算和周到的投资,股票市场可以通过最少的资本投资来确保可观的利润,而错误的预测可以轻松地为投资者带来灾难性的财务损失。本文介绍了最近引入的机器学习模型 - 变压器模型的应用,以预测孟加拉国领先的证券交易所达卡证券交易所(DSE)的未来价格。变压器模型已被广泛用于自然语言处理和计算机视觉任务,但据我们所知,从未在DSE进行股票价格预测任务。最近,介绍了代表时间序列功能的Time2VEC编码,使得可以采用变压器模型进行股票价格预测。本文集中于基于变压器的模型的应用,以根据其历史和每周的数据来预测DSE中列出的八个特定股票的价格转移。我们的实验证明了大多数股票的有希望的结果和可接受的根平方误差。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
如今,指数基金首选大量的股本基金,市场敏感性有助于管理它们。指数资金可能会相同复制该指数,但是,成本友善和不切实际。此外,要利用市场敏感性来部分复制索引,必须准确地预测或估计它们。因此,首先,我们研究了深度学习模型以预测市场敏感性。此外,我们提出了数据处理方法的务实应用,以帮助培训并为预测生成目标数据。然后,我们提出了一个部分控制投资组合和索引的净预测市场敏感性的部分索引跟踪优化模型。韩国股票价格指数200证实了这些过程的功效。与历史估计相比,我们的实验显示了预测错误的显着降低,以及使用整个组成部分中少于一半的一半来复制指数的竞争跟踪错误。因此,我们表明,应用深度学习来预测市场敏感性是有希望的,并且我们的投资组合构建方法实际上是有效的。此外,据我们所知,这是第一个针对集中于深度学习的市场敏感性的研究。
translated by 谷歌翻译
本文旨在提出和应用机器学习方法,以使用其组件的历史回报数据来分析交易所交易基金(ETF)的回报方向,从而通过交易算法有助于制定投资策略决策。从方法论方面,除了算法误差指标外,还使用来自巴西和美国市场的标准数据集应用了回归和分类模型。在研究结果方面,它们进行了分析并将其与NA \“ Ive”预测和购买和持有技术在同一时期获得的收益进行了比较。就风险和回报而言,模型的性能大多要比控制指标重点是线性回归模型和通过逻辑回归的分类模型,支持向量机(使用LinearsVC模型),高斯天真的贝叶斯和K-Nearest邻居,在某些数据集中,在某些数据集中,回报超过了两次,并且夏普比率高达购买和持有控制模型的比率四倍。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
这篇科学论文提出了一种新型的投资组合优化模型,使用改进的深钢筋学习算法。优化模型的目标函数是投资组合累积回报的期望和价值的加权总和。所提出的算法基于参与者 - 批判性架构,其中关键网络的主要任务是使用分位数回归学习投资组合累积返回的分布,而Actor网络通过最大化上述目标函数来输出最佳投资组合权重。同时,我们利用线性转换功能来实现资产短销售。最后,使用了一种称为APE-X的多进程方法来加速深度强化学习训练的速度。为了验证我们提出的方法,我们对两个代表性的投资组合进行了重新测试,并观察到这项工作中提出的模型优于基准策略。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
在本文中,我们提出了一种评估为策略的长期绩效提供了现实预期的自主交易策略的方法。此方法解决此方法解决了许多陷阱,目前甚至经历过多种软件开发人员和研究人员,更不用说购买这些产品的客户。我们展示了将我们的方法应用于几种着名的自主交易策略的结果,用于管理各种金融资产选择。结果表明,许多这些公布的策略远远不可靠的金融投资车辆。我们的方法暴露了建立可靠,长期策略的困难,并提供了一种通过建立最小期间和测试执行要求来选择最有前途的潜在策略的手段。有许多开发人员可以创建软件,以自主购买和销售金融资产,其中一些人在使用历史价格系列(通常称为Resolties)时仿真时具有很大的性能。尽管如此,当这些策略用于实际市场(或在培训或评估中使用的数据)时,它们通常会非常糟糕。该方法可用于评估潜在的策略。通过这种方式,该方法有助于判断您是否真的有一个很好的交易策略,或者您只是愚弄自己。
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
股票市场是一个网络,为几乎所有主要的经济交易提供平台。虽然投资股票市场是一个好主意,但对单个股票进行投资可能不是一个好主意,尤其是对于休闲投资者而言。智能储备需要深入研究和大量奉献精神。预测这种股票价值提供了巨大的套利利润机会。找到解决方案的这种吸引力促使研究人员找到了过去的问题,例如波动,季节性和时间依赖时间。本文调查了自然语言处理和机器学习技术领域的最新文献,用于预测股票市场的发展。本文的主要贡献包括许多最近的文章的复杂分类以及股票市场预测研究及其相关领域的最新研究趋势。
translated by 谷歌翻译
股票市场的不可预测性和波动性使得使用任何广义计划赚取可观的利润具有挑战性。许多先前的研究尝试了不同的技术来建立机器学习模型,这可以通过进行实时交易来在美国股票市场赚取可观的利润。但是,很少有研究重点是在特定交易期找到最佳功能的重要性。我们的顶级方法使用该性能将功能从总共148缩小到大约30。此外,在每次训练我们的机器学习模型之前,都会动态选择前25个功能。它与四个分类器一起使用合奏学习:高斯天真贝叶斯,决策树,带L1正则化的逻辑回归和随机梯度下降,以决定是长时间还是短的特定股票。我们的最佳模型在2011年7月至2019年1月之间进行的每日交易,可获得54.35%的利润。最后,我们的工作表明,加权分类器的混合物的表现要比任何在股票市场做出交易决策的个人预测指标更好。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
在本文中,我们研究了使用深层学习技术预测外汇货币对未来波动性的问题。我们逐步展示如何通过对白天波动率的经验模式的指导来构建深度学习网络。数值结果表明,与传统的基线(即自回归和GARCH模型)相比,多尺寸长的短期内存(LSTM)模型与多货币对的输入相比一致地实现了最先进的准确性,即自动增加和加入模型其他深度学习模式。
translated by 谷歌翻译
With the increasing enrichment and development of the financial derivatives market, the frequency of transactions is also faster and faster. Due to human limitations, algorithms and automatic trading have recently become the focus of discussion. In this paper, we propose a bidirectional LSTM neural network based on an attention mechanism, which is based on two popular assets, gold and bitcoin. In terms of Feature Engineering, on the one hand, we add traditional technical factors, and at the same time, we combine time series models to develop factors. In the selection of model parameters, we finally chose a two-layer deep learning network. According to AUC measurement, the accuracy of bitcoin and gold is 71.94% and 73.03% respectively. Using the forecast results, we achieved a return of 1089.34% in two years. At the same time, we also compare the attention Bi-LSTM model proposed in this paper with the traditional model, and the results show that our model has the best performance in this data set. Finally, we discuss the significance of the model and the experimental results, as well as the possible improvement direction in the future.
translated by 谷歌翻译
在本文中,我们研究了中途公司,即在市场资本化少于100亿美元的公开交易公司。在30年内使用美国中载公司的大型数据集,我们期望通过中期预测默认的概率术语结构,了解哪些数据源(即基本,市场或定价数据)对违约风险贡献最多。然而,现有方法通常要求来自不同时间段的数据首先聚合并转变为横截面特征,我们将问题框架作为多标签时间级分类问题。我们适应变压器模型,从自然语言处理领域发出的最先进的深度学习模型,以信用风险建模设置。我们还使用注意热图解释这些模型的预测。为了进一步优化模型,我们为多标签分类和新型多通道架构提供了一种自定义损耗功能,具有差异训练,使模型能够有效地使用所有输入数据。我们的结果表明,拟议的深度学习架构的卓越性能,导致传统模型的AUC(接收器运行特征曲线下的区域)提高了13%。我们还展示了如何使用特定于这些模型的福利方法生成不同数据源和时间关系的重要性排名。
translated by 谷歌翻译
在人工智能区域中已经在人工智能区域进行了自主交易机器人。已经测试了许多AI技术,用于建立能够交易金融资产的自主代理。这些举措包括传统的神经网络,模糊逻辑,加固学习,而且还有更新的方法,如深神经网络和深度加强学习。许多开发人员声称在使用历史价格系列执行时,在模拟执行时,可以成功创建具有良好性能的机器人。然而,当这些机器人在真正的市场中使用时,通常它们在风险方面存在糟糕的表现并返回。在本文中,我们提出了一个名为MT5SE的开源框架,有助于开发,重新击退,实时测试和自主交易者的实际运作。我们使用MT5SE构建并测试了几个交易者。结果表明它可能有助于开发更好的交易者。此外,我们讨论了许多研究中使用的简单架构,并提出了一种替代的多层架构。这种架构将投资组合经理(PM)分开了两个主要问题:价格预测和资本分配。超过达到高精度,PM应该在正确的时候增加利润并减少损失。此外,价格预测高度依赖于资产的性质和历史,而资本分配仅依赖于分析师的预测性能和资产的相关性。最后,我们讨论了该地区的一些有前途的技术。
translated by 谷歌翻译
在许多研究中已经表明,考虑相关股票数据预测股票价格变动的重要性,但是,用于建模,嵌入和分析相互关联股票行为的先进图形技术尚未被广泛利用,以预测股票价格变动。该领域的主要挑战是找到一种建模任意股票之间现有关系的方法,并利用这种模型来改善这些股票的预测绩效。该领域中的大多数现有方法都取决于基本的图形分析技术,预测能力有限,并且缺乏通用性和灵活性。在本文中,我们介绍了一个名为GCNET的新颖框架,该框架将任意股票之间的关系建模为称为“影响网络”的图形结构,并使用一组基于历史的预测模型来推断出股票子集的合理初始标签图中的节点。最后,GCNET使用图形卷积网络算法来分析此部分标记的图形,并预测图中每个库存的下一个运动价格方向。 GCNET是一个一般预测框架,可以根据其历史数据来预测相互作用股票的价格波动。我们对纳斯达克指数一组股票的实验和评估表明,GCNET在准确性和MCC测量方面显着提高了SOTA的性能。
translated by 谷歌翻译