With the increasing enrichment and development of the financial derivatives market, the frequency of transactions is also faster and faster. Due to human limitations, algorithms and automatic trading have recently become the focus of discussion. In this paper, we propose a bidirectional LSTM neural network based on an attention mechanism, which is based on two popular assets, gold and bitcoin. In terms of Feature Engineering, on the one hand, we add traditional technical factors, and at the same time, we combine time series models to develop factors. In the selection of model parameters, we finally chose a two-layer deep learning network. According to AUC measurement, the accuracy of bitcoin and gold is 71.94% and 73.03% respectively. Using the forecast results, we achieved a return of 1089.34% in two years. At the same time, we also compare the attention Bi-LSTM model proposed in this paper with the traditional model, and the results show that our model has the best performance in this data set. Finally, we discuss the significance of the model and the experimental results, as well as the possible improvement direction in the future.
translated by 谷歌翻译
良好的研究努力致力于利用股票预测中的深度神经网络。虽然远程依赖性和混沌属性仍然是在预测未来价格趋势之前降低最先进的深度学习模型的表现。在这项研究中,我们提出了一个新的框架来解决这两个问题。具体地,在将时间序列转换为复杂网络方面,我们将市场价格系列转换为图形。然后,从映射的图表中提取参考时间点和节点权重之间的关联的结构信息以解决关于远程依赖性和混沌属性的问题。我们采取图形嵌入式以表示时间点之间的关联作为预测模型输入。节点重量被用作先验知识,以增强时间关注的学习。我们拟议的框架的有效性通过现实世界股票数据验证,我们的方法在几个最先进的基准中获得了最佳性能。此外,在进行的交易模拟中,我们的框架进一步获得了最高的累积利润。我们的结果补充了复杂网络方法在金融领域的现有应用,并为金融市场中决策支持的投资应用提供了富有识别的影响。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
决定何时购买或出售股票并不是一件容易的事,因为市场难以预测,受到政治和经济因素的影响。因此,基于计算智能的方法已应用于这个具有挑战性的问题。在这项工作中,每天使用技术分析标准以相似性(TOPSIS)的相似性(TOPSIS)对订单偏好进行排名,并选择最合适的股票进行购买。即便如此,在某些日子甚至Topsis都会选择不正确的选择。为了改善选择,应使用另一种方法。因此,提出了由经验模式分解(EMD)和极端学习机(ELM)组成的混合模型。 EMD将系列分解为几个子系列,因此提取了主要组分(趋势)。该组件由ELM处理,该组件执行下一个组件元素的预测。如果榆树预测的价值大于最后一个值,则确认购买股票的价值。该方法应用于巴西市场的50个股票的宇宙。与随机选择和Bovespa指数产生的回报相比,Topsis进行的选择显示出令人鼓舞的结果。使用EMD-ELM混合动力模型的确认能够增加利润交易的百分比。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
股票市场的不可预测性和波动性使得使用任何广义计划赚取可观的利润具有挑战性。许多先前的研究尝试了不同的技术来建立机器学习模型,这可以通过进行实时交易来在美国股票市场赚取可观的利润。但是,很少有研究重点是在特定交易期找到最佳功能的重要性。我们的顶级方法使用该性能将功能从总共148缩小到大约30。此外,在每次训练我们的机器学习模型之前,都会动态选择前25个功能。它与四个分类器一起使用合奏学习:高斯天真贝叶斯,决策树,带L1正则化的逻辑回归和随机梯度下降,以决定是长时间还是短的特定股票。我们的最佳模型在2011年7月至2019年1月之间进行的每日交易,可获得54.35%的利润。最后,我们的工作表明,加权分类器的混合物的表现要比任何在股票市场做出交易决策的个人预测指标更好。
translated by 谷歌翻译
统计建模和数据驱动学习是吸引许多关注的两个重要领域。统计模型打算捕获和解释变量之间的关系,而基于数据的学习尝试直接从数据中提取信息而无需通过复杂模型预先处理。鉴于两个字段中的广泛研究,一个微妙的问题是如何正确地整合基于数据的方法现有知识或模型。在本文中,基于时间序列数据,我们提出了两种不同的方向来集成两者,基于分解的方法和利用数据特征的统计提取方法。第一个将数据分解成线性稳定,非线性稳定和不稳定部件,其中合适的统计模型用于线性稳定和非线性稳定部件,而适当的机器学习工具用于不稳定部件。第二个应用统计模型来提取数据的统计特征,并将其作为额外的输入送入机器学习平台进行培训。最关键和具有挑战性的是如何从数学或统计模型中确定和提取有价值的信息,以提高机器学习算法的性能。我们使用具有不同程度的稳定性的时间序列数据评估该提案。性能结果表明,两种方法都可以优于使用模型和单独学习的现有方案,而改进可能超过60%。我们所提出的方法都具有促进拓展模型和数据驱动的方案之间的差距,并集成了两个,以提供全面的高等学校性能。
translated by 谷歌翻译
股票市场是一个网络,为几乎所有主要的经济交易提供平台。虽然投资股票市场是一个好主意,但对单个股票进行投资可能不是一个好主意,尤其是对于休闲投资者而言。智能储备需要深入研究和大量奉献精神。预测这种股票价值提供了巨大的套利利润机会。找到解决方案的这种吸引力促使研究人员找到了过去的问题,例如波动,季节性和时间依赖时间。本文调查了自然语言处理和机器学习技术领域的最新文献,用于预测股票市场的发展。本文的主要贡献包括许多最近的文章的复杂分类以及股票市场预测研究及其相关领域的最新研究趋势。
translated by 谷歌翻译
对于长期来说,研究人员一直在开发可靠而准确的股票价格预测预测模型。根据文献,如果预测模型是正确的设计和精炼,他们可以煞费苦心地和忠实地估计未来的库存价值。本文展示了一组时间序列,计量经济性和各种基于学习的股票价格预测模型。在此处使用来自2004年1月至2019年12月至2019年12月的Infosys,Icici和Sun Pharma的数据用于培训和测试模型,以了解哪种模型在哪个部门中表现最佳。一个时间序列模型(Holt-Winters指数平滑),一个计量计量模型(Arima),两台机器学习模型(随机林和火星),以及两种深度学习的模型(简单的RNN和LSTM)已被列入本文。火星已被证明是最好的执行机器学习模式,而LSTM已被证明是表现最好的深层学习模式。但总体而言,对于所有三个部门 - 它(在Infosys数据上),银行业务(在ICICI数据)和健康(在Sun Pharma数据上),Mars已被证明是销售预测中最佳表现模式。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
这篇科学论文提出了一种新型的投资组合优化模型,使用改进的深钢筋学习算法。优化模型的目标函数是投资组合累积回报的期望和价值的加权总和。所提出的算法基于参与者 - 批判性架构,其中关键网络的主要任务是使用分位数回归学习投资组合累积返回的分布,而Actor网络通过最大化上述目标函数来输出最佳投资组合权重。同时,我们利用线性转换功能来实现资产短销售。最后,使用了一种称为APE-X的多进程方法来加速深度强化学习训练的速度。为了验证我们提出的方法,我们对两个代表性的投资组合进行了重新测试,并观察到这项工作中提出的模型优于基准策略。
translated by 谷歌翻译
强化学习(RL)技术在许多具有挑战性的定量交易任务(例如投资组合管理和算法交易)中取得了巨大的成功。尤其是,由于金融市场的盘中行为反映了数十亿个快速波动的首都,所以盘中交易是最有利可图和风险的任务之一。但是,绝大多数现有的RL方法都集中在相对较低的频率交易方案(例如日级),并且由于两个主要挑战而无法捕获短暂的盘中投资机会:1)如何有效地培训额外的RL额外的RL代理,以供日盘培训。投资决策,涉及高维良好的动作空间; 2)如何学习有意义的多模式市场表示,以了解tick级金融市场的盘中行为。在专业人类盘中交易者的有效工作流程中,我们提出了DeepScalper,这是一个深入的加强学习框架,用于解决上述挑战。具体而言,DeepScalper包括四个组成部分:1)针对行动分支的决斗Q-Network,以应对日内交易的大型动作空间,以进行有效的RL优化; 2)带有事后奖励的新型奖励功能,以鼓励RL代理商在整个交易日的长期范围内做出交易决策; 3)一个编码器架构架构,用于学习多模式的临时市场嵌入,其中既包含宏观级别和微型市场信息; 4)在最大化利润和最小化风险之间保持惊人平衡的风险意识辅助任务。通过对六个金融期货的三年来真实世界数据的广泛实验,我们证明,在四个财务标准方面,DeepScalper显着优于许多最先进的基线。
translated by 谷歌翻译
已经发现,已经发现深度学习架构,特别是深度动量网络(DMNS)[1904.04912]是一种有效的势头和平均逆转交易的方法。然而,近年来一些关键挑战涉及学习长期依赖,在考虑返回交易成本净净额并适应新的市场制度时,绩效的退化,特别是在SARS-COV-2危机期间。注意机制或基于变换器的架构是对这些挑战的解决方案,因为它们允许网络专注于过去和长期模式的重要时间步骤。我们介绍了势头变压器,一种基于关注的架构,胜过基准,并且本质上是可解释的,为我们提供更大的深入学习交易策略。我们的模型是基于LSTM的DMN的扩展,它通过在风险调整的性能度量上优化网络,直接输出位置尺寸,例如锐利比率。我们发现注意力LSTM混合解码器仅时间融合变压器(TFT)样式架构是最佳的执行模型。在可解释性方面,我们观察注意力模式的显着结构,在动量转点时具有重要的重要性。因此,时间序列被分段为制度,并且该模型倾向于关注以前的制度中的先前时间步骤。我们发现ChangePoint检测(CPD)[2105.13727],另一个用于响应政权变化的技术可以补充多抬头的注意力,特别是当我们在多个时间尺度运行CPD时。通过添加可解释的变量选择网络,我们观察CPD如何帮助我们的模型在日常返回数据上主要远离交易。我们注意到该模型可以智能地切换和混合古典策略 - 基于数据的决定。
translated by 谷歌翻译
如今,指数基金首选大量的股本基金,市场敏感性有助于管理它们。指数资金可能会相同复制该指数,但是,成本友善和不切实际。此外,要利用市场敏感性来部分复制索引,必须准确地预测或估计它们。因此,首先,我们研究了深度学习模型以预测市场敏感性。此外,我们提出了数据处理方法的务实应用,以帮助培训并为预测生成目标数据。然后,我们提出了一个部分控制投资组合和索引的净预测市场敏感性的部分索引跟踪优化模型。韩国股票价格指数200证实了这些过程的功效。与历史估计相比,我们的实验显示了预测错误的显着降低,以及使用整个组成部分中少于一半的一半来复制指数的竞争跟踪错误。因此,我们表明,应用深度学习来预测市场敏感性是有希望的,并且我们的投资组合构建方法实际上是有效的。此外,据我们所知,这是第一个针对集中于深度学习的市场敏感性的研究。
translated by 谷歌翻译
准确预测未来股票价格的预测模型设计一直被认为是一个有趣和具有挑战性的研究问题。由于现实世界中的股价波动和随机性质,这项任务变得复杂,这是受许多可控和无法控制的变量的影响。本文介绍了一个优化的预测模型,内置于长期内存(LSTM)架构,用于自动从网上从网站上提取过去的时间间隔,并预测其未来的指定预测地平线的价格,并预测未来股票价格。该模型部署以根据其在印度国家证券交易所(NSE)中列出的70个不同部门的70个重要股票的预测结果,以便根据其预测结果。每个部门的盈利能力基于该部门的股票在2010年1月1日至8月26日2021年8月26日的股票所产生的总利润来源。该部门基于其盈利价值。还针对每个扇区评估模型的预测精度。结果表明,该模型在预测未来股票价格方面非常准确。
translated by 谷歌翻译
可以从金融新闻文章中获取的主要信息来源,这些文章与股票趋势的波动有一些相关性。在本文中,我们从多个现实的观点研究了金融新闻对股票趋势的影响。其背后的直觉是基于新闻事件不同间隔的新闻不确定性以及每个金融新闻中缺乏注释的新闻不确定性。在多个实例学习(MIL)的情况下,将培训实例安排在袋子中,并为整个袋子而不是实例分配标签,我们开发了一种灵活且适应性的多态度学习模型,并评估其在方向运动预测中的能力《金融新闻数据集》中的标准和POORS 500指数。具体来说,我们将每个交易日视为一个袋子,每个交易日都会发生一定数量的新闻作为每个袋子的情况。实验结果表明,与其他最先进的方法和基准相比,我们提出的基于多实体的框架在趋势预测的准确性方面获得了出色的结果。
translated by 谷歌翻译
Crypto-coins (also known as cryptocurrencies) are tradable digital assets. Notable examples include Bitcoin, Ether and Litecoin. Ownerships of cryptocoins are registered on distributed ledgers (i.e., blockchains). Secure encryption techniques guarantee the security of the transactions (transfers of coins across owners), registered into the ledger. Cryptocoins are exchanged for specific trading prices. While history has shown the extreme volatility of such trading prices across all different sets of crypto-assets, it remains unclear what and if there are tight relations between the trading prices of different cryptocoins. Major coin exchanges (i.e., Coinbase) provide trend correlation indicators to coin owners, suggesting possible acquisitions or sells. However, these correlations remain largely unvalidated. In this paper, we shed lights on the trend correlations across a large variety of cryptocoins, by investigating their coin-price correlation trends over a period of two years. Our experimental results suggest strong correlation patterns between main coins (Ethereum, Bitcoin) and alt-coins. We believe our study can support forecasting techniques for time-series modeling in the context of crypto-coins. We release our dataset and code to reproduce our analysis to the research community.
translated by 谷歌翻译
在现代资本市场中,由于各种社会,财务,政治和其他动态因素,股票的价格通常被认为是高度波动和不可预测的。借助计算和周到的投资,股票市场可以通过最少的资本投资来确保可观的利润,而错误的预测可以轻松地为投资者带来灾难性的财务损失。本文介绍了最近引入的机器学习模型 - 变压器模型的应用,以预测孟加拉国领先的证券交易所达卡证券交易所(DSE)的未来价格。变压器模型已被广泛用于自然语言处理和计算机视觉任务,但据我们所知,从未在DSE进行股票价格预测任务。最近,介绍了代表时间序列功能的Time2VEC编码,使得可以采用变压器模型进行股票价格预测。本文集中于基于变压器的模型的应用,以根据其历史和每周的数据来预测DSE中列出的八个特定股票的价格转移。我们的实验证明了大多数股票的有希望的结果和可接受的根平方误差。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译