人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
地震的预测和预测有很长的时间,在某些情况下有肮脏的历史,但是最近的工作重新点燃了基于预警的进步,诱发地震性的危害评估以及对实验室地震的成功预测。在实验室中,摩擦滑移事件为地震和地震周期提供了类似物。 Labquakes是机器学习(ML)的理想目标,因为它们可以在受控条件下以长序列生产。最近的作品表明,ML可以使用断层区的声学排放来预测实验室的几个方面。在这里,我们概括了这些结果,并探索了Labquake预测和自动回归(AR)预测的深度学习(DL)方法。 DL改善了现有的Labquake预测方法。 AR方法允许通过迭代预测在未来的视野中进行预测。我们证明,基于长期任期内存(LSTM)和卷积神经网络的DL模型可以预测在几种条件下实验室,并且可以以忠诚度预测断层区应力,证实声能是断层区应力的指纹。我们还预测了实验室的失败开始(TTSF)和失败结束(TTEF)的时间。有趣的是,在所有地震循环中都可以成功预测TTEF,而TTSF的预测随preseismisic断层蠕变的数量而变化。我们报告了使用三个序列建模框架:LSTM,时间卷积网络和变压器网络预测故障应力演变的AR方法。 AR预测与现有的预测模型不同,该模型仅在特定时间预测目标变量。超出单个地震周期的预测结果有限,但令人鼓舞。我们的ML/DL模型优于最先进的模型,我们的自回归模型代表了一个新颖的框架,可以增强当前的地震预测方法。
translated by 谷歌翻译
通过深度学习(DL)大大扩展了数据驱动故障诊断模型的范围。然而,经典卷积和反复化结构具有计算效率和特征表示的缺陷,而基于注意机制的最新变压器架构尚未应用于该字段。为了解决这些问题,我们提出了一种新颖的时变电片(TFT)模型,其灵感来自序列加工的香草变压器大规模成功。特别是,我们设计了一个新的笨蛋和编码器模块,以从振动信号的时频表示(TFR)中提取有效抽象。在此基础上,本文提出了一种基于时变电片的新的端到端故障诊断框架。通过轴承实验数据集的案例研究,我们构建了最佳变压器结构并验证了其故障诊断性能。与基准模型和其他最先进的方法相比,证明了所提出的方法的优越性。
translated by 谷歌翻译
公共收费站占用预测在开发智能充电策略方面发挥了重要意义,以减少电动车辆(EV)操作员和用户不便。然而,现有研究主要基于具有有限的准确度的传统经济学或时间序列方法。我们提出了一种新的混合长期内记忆神经网络,其包括历史充电状态序列和时间相关的特征,用于多步离散充电占用状态预测。与现有的LSTM网络不同,所提出的模型将不同类型的特征分开,并用混合神经网络架构处理它们。该模型与许多最先进的机器学习和深度学习方法进行了比较,基于从英国邓迪市的开放数据门户网站获得的EV充电数据。结果表明,该方法分别产生非常准确的预测(99.99%和81.87%,分别前进(10分钟)和6个步骤(1小时),优于基准接近的(+ 22.4%)前方预测和6步前方的预测和6.2%)。进行灵敏度分析,以评估模型参数对预测精度的影响。
translated by 谷歌翻译
社交媒体的自杀意图检测是一种不断发展的研究,挑战了巨大的挑战。许多有自杀倾向的人通过社交媒体平台分享他们的思想和意见。作为许多研究的一部分,观察到社交媒体的公开职位包含有价值的标准,以有效地检测有自杀思想的个人。防止自杀的最困难的部分是检测和理解可能导致自杀的复杂风险因素和警告标志。这可以通过自动识别用户行为的突然变化来实现。自然语言处理技术可用于收集社交媒体交互的行为和文本特征,这些功能可以传递给特殊设计的框架,以检测人类交互中的异常,这是自杀意图指标。我们可以使用深度学习和/或基于机器学习的分类方法来实现快速检测自杀式思想。出于这种目的,我们可以采用LSTM和CNN模型的组合来检测来自用户的帖子的这种情绪。为了提高准确性,一些方法可以使用更多数据进行培训,使用注意模型提高现有模型等的效率。本文提出了一种LSTM-Incription-CNN组合模型,用于分析社交媒体提交,以检测任何潜在的自杀意图。在评估期间,所提出的模型的准确性为90.3%,F1分数为92.6%,其大于基线模型。
translated by 谷歌翻译
考虑到运输系统的多模式性质和潜在的跨模式相关性,通过从多模式数据中学习来提高需求预测准确性的趋势越来越大。这些多模式的预测模型可以提高准确性,但是当多模式数据集的不同部分由无法直接共享数据的不同机构拥有时,不太实际。尽管各个机构可能无法直接共享他们的数据,但他们可能会共享受其数据培训的预测模型,在此模型无法使用其数据集中确定确切信息。这项研究提出了一个无监督的知识适应需求预测框架,以通过基于其他模式的数据利用预训练的模型来预测目标模式的需求,这不需要源模式的直接数据共享。所提出的框架利用多种运输模式之间的潜在共享模式来改善预测性能,同时避免在不同机构之间直接共享数据。具体而言,首先根据源模式的数据学习了预训练的预测模型,该模式可以捕获和记住源旅行模式。然后,将目标数据集的需求数据编码为单个知识部分和共享知识部分,该部分将分别通过个人提取网络提取旅行模式和共享提取网络。无监督的知识适应策略用于通过制作预训练的网络和共享提取网络类似来形成共享功能,以进一步预测。我们的发现表明,通过将预先训练的模型共享到目标模式可以改善预测性能,而无需依赖直接数据共享。
translated by 谷歌翻译
由一维卷积神经网络(1D-CNN)和长短期存储器(LSTM)网络组成的架构,该架构被提出为CNNSLSTM,用于在此中进行每小时降雨 - 径流模型学习。在CNNSLTSM中,CNN分量在长时间接收小时气象时间序列数据,然后LSTM组件从1D-CNN和小时气象时间序列数据接收提取的特征以进行短期持续时间。以案例研究为例,CNNSLSTM在日本伊希卡里河流域的每小时降雨径流建模。气象数据集由沉淀,空气温度,蒸发散,和长波辐射组成,用作输入,河流流量用作目标数据。为了评估所提出的CNNSLSTM的性能,将CNNSLSTM的结果与1D-CNN,LSTM的结果进行比较,仅用每小时输入(LSTMWHOUT),1D-CNN和LSTM(CNNPLSTM)的并行架构,以及使用每日的LSTM架构每小时输入数据(LSTMWDPH)。与三个传统架构(1D-CNN,LSTMWHOUL和CNNPLSTM)相比,CNNSLSTM对估计准确度明显改进,最近提出了LSTMWDPH。与观察到的流动相比,测试时段的NSE值的中值为0.455-0.469,用于1d-CNN(基于NCHF = 8,16和32,第一层的特征图的信道的数量CNN),用于CNNPLSTM的0.639-0.656(基于NCHF = 8,16和32),LSTMWHOUR的0.745,LSTMWDPH的0.831,CNNSLSTM为0.865-0.873(基于NCHF = 8,16和32)。此外,所提出的CNNSLSTM将1D-CNN的中值降低50.2%-51.4%,CNPLSTM在37.4%-40.8%,LSTMWHOUR,达27.3%-29.5%,LSTMWDPH为10.6%-13.4%。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
由于道路上越来越多的车辆,城市的交通管理已成为一个主要问题。智能交通系统(其)可以帮助城市交通管理者通过提供准确的流量预测来解决问题。为此,它需要一种可靠的业务预测算法,其可以基于过去和当前的业务数据在多个时间步骤中提供准确的流量预测。近年来,已经提出了许多不同的交通预测方法,这些方法已经证明了它们在准确性方面的有效性。然而,这些方法中的大多数都认为仅包括空间信息或时间信息并忽略了其他的效果。在本文中,为了解决上述问题,使用空间和时间依赖性开发了基于深度学习的方法。要考虑时空依赖项,基于交通相似度和距离等属性选择特定即时的附近的道路传感器。使用潜在空间映射的概念交叉连接两个预训练的深度自动编码器,并且使用从所选附近传感器的流量数据培训所得模型作为输入。使用从洛杉矶和湾区的不同高速公路上安装的Loop Detector传感器收集的现实世界交通数据培训了所提出的深度学习方法。来自加利福尼亚州运输绩效测量系统(PEMS)的网络门户网站自由提供交通数据。通过将其与许多机/深度学习方法进行比较来验证所提出的方法的有效性。已经发现,所提出的方法即使对于比其他技术最小的误差,即使超过60分钟的前方预测也提供了准确的流量预测结果。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
通过准确,及时的流量预测,可以预先预测受影响的交通状况,以指导机构和居民适当地应对交通模式的变化。但是,例如,关于交通预测的现有作品主要依赖于仅在1小时以下的短期预测的历史流量模式。为了更好地管理未来的道路能力并适应社会和人类的影响,提出一个灵活而全面的框架以预测公共用户和运输机构的长期交通状况至关重要。在本文中,考虑到社交媒体的功能,弥合了强大的长期交通预测的差距。首先实施了相关研究和线性回归模型,以评估两个时间序列数据,流量强度和Twitter数据强度之间的相关性的重要性。然后将两个时间序列数据提供给我们提出的社会意识框架,即交通扭转变压器,该框架将大自然语言表示形式集成到时间序列记录中以进行长期流量预测。大西雅图地区的实验结果表明,我们提出的模型在所有评估矩阵中都优于基线模型。这个由NLP加入的社会感知框架可以成为交通代理机构的网络交通预测和管理的宝贵实现。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
在时间序列预测的各种软计算方法中,模糊认知地图(FCM)已经显示出显着的结果作为模拟和分析复杂系统动态的工具。 FCM具有与经常性神经网络的相似之处,可以被分类为神经模糊方法。换句话说,FCMS是模糊逻辑,神经网络和专家系统方面的混合,它作为模拟和研究复杂系统的动态行为的强大工具。最有趣的特征是知识解释性,动态特征和学习能力。本调查纸的目标主要是在文献中提出的最相关和最近的基于FCCM的时间序列预测模型概述。此外,本文认为介绍FCM模型和学习方法的基础。此外,该调查提供了一些旨在提高FCM的能力的一些想法,以便在处理非稳定性数据和可扩展性问题等现实实验中涵盖一些挑战。此外,具有快速学习算法的FCMS是该领域的主要问题之一。
translated by 谷歌翻译
由于在线学习和评估平台(例如Coursera,Udemy,Khan Academy等)的兴起,对论文(AES)和自动论文评分的自动评估(AES)已成为一个严重的问题。研究人员最近提出了许多用于自动评估的技术。但是,其中许多技术都使用手工制作的功能,因此从特征表示的角度受到限制。深度学习已成为机器学习中的新范式,可以利用大量数据并确定对论文评估有用的功能。为此,我们提出了一种基于复发网络(RNN)和卷积神经网络(CNN)的新型体系结构。在拟议的体系结构中,多通道卷积层从嵌入矢量和基本语义概念中学习并捕获单词n-gram的上下文特征,并使用max-pooling操作在论文级别形成特征向量。 RNN的变体称为双门复发单元(BGRU),用于访问以前和后续的上下文表示。该实验是对Kaggle上的八个数据集进行的,以实现AES的任务。实验结果表明,我们提出的系统比其他基于深度学习的AES系统以及其他最新AES系统的评分精度明显更高。
translated by 谷歌翻译
短期负荷预测(STLF)由于复杂的时间序列(TS)是一种表达三个季节性模式和非线性趋势的挑战。本文提出了一种新的混合分层深度学习模型,涉及多个季节性,并产生两点预测和预测间隔(PIS)。它结合了指数平滑(ES)和经常性神经网络(RNN)。 ES动态提取每个单独的TS的主要组件,并启用在飞行的临时化,这在相对较小的数据集上操作时特别有用。多层RNN配备了一种新型扩张的经常性电池,旨在有效地模拟TS中的短期和长期依赖性。为了改善内部TS表示,因此模型的性能,RNN同时学习ES参数和主要映射函数将输入转换为预测。我们比较我们对几种基线方法的方法,包括古典统计方法和机器学习(ML)方法,在35个欧洲国家的STLF问题。实证研究清楚地表明,该模型具有高表现力,以解决非线性随机预测问题,包括多个季节性和显着的随机波动。实际上,它在准确性方面优于统计和最先进的ML模型。
translated by 谷歌翻译
准确的短期太阳能和风电预测在电力系统的规划和运营中起着重要作用。然而,由于局部天气条件,由于局部天气条件,因此,可再生能源的短期功率预测始终被认为是复杂的回归问题,而输出能力的波动和动态变化规律,即时空相关性。为了同时捕获时空特征,本文提出了一种新的基于图的神经网络的短期功率预测方法,它结合了图形卷积网络(GCN)和长短期内存(LSTM)。具体地,GCN用于学习相邻可再生能量之间的复杂空间相关性,并且LSTM用于学习功率曲线的动态变化。仿真结果表明,该拟议的混合方法可以模拟可再生能源的时空相关性,其性能优于现实世界数据集上的流行基线。
translated by 谷歌翻译