预测时间序列数据代表了数据科学和知识发现研究的新兴领域,其广泛应用程序从股票价格和能源需求预测到早期预测流行病。在过去的五十年中,已经提出了许多统计和机器学习方法,对高质量和可靠预测的需求。但是,在现实生活中的预测问题中,存在基于上述范式之一的模型是可取的。因此,需要混合解决方案来弥合经典预测方法与现代神经网络模型之间的差距。在这种情况下,我们介绍了一个概率自回归神经网络(PARNN)模型,该模型可以处理各种复杂的时间序列数据(例如,非线性,非季节性,远程依赖性和非平稳性)。拟议的PARNN模型是通过建立综合运动平均值和自回归神经网络的融合来构建的,以保持个人的解释性,可伸缩性和``白色盒子样''的预测行为。通过考虑相关的马尔可夫链的渐近行为,获得了渐近平稳性和几何形状的足够条件。与先进的深度学习工具不同,基于预测间隔的PARNN模型的不确定性量化。在计算实验期间,Parnn在各种各样的现实世界数据集中,超过了标准统计,机器学习和深度学习模型(例如,变形金刚,Nbeats,Deepar等),来自宏观经济学,旅游,能源,流行病学和其他人的真实数据集集合 - 期,中期和长期预测。与最先进的预报相比,与最佳方法相比,与最佳方法进行了多重比较,以展示该提案的优越性。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
我们向Facebook先知推出了一位继任者,为可解释,可扩展和用户友好的预测框架制定了一个行业标准。随着时间序列数据的扩散,可说明的预测仍然是企业和运营决策的具有挑战性的任务。需要混合解决方案来弥合可解释的古典方法与可扩展深层学习模型之间的差距。我们将先知视为这样一个解决方案的前兆。然而,先知缺乏本地背景,这对于预测近期未来至关重要,并且由于其斯坦坦后代而挑战。 NeultProphet是一种基于Pytorch的混合预测框架,并用标准的深度学习方法培训,开发人员可以轻松扩展框架。本地上下文使用自动回归和协变量模块引入,可以配置为经典线性回归或作为神经网络。否则,NeultProphet保留了先知的设计理念,提供了相同的基本模型组件。我们的结果表明,NeultProcrophet在一组生成的时间序列上产生了相当或优质的质量的可解释的预测组件。 NeultProphet在各种各样的现实数据集合中占先知。对于中期预测,NeultProclecrophet将预测精度提高55%至92%。
translated by 谷歌翻译
已经显示混合方法以在预测任务中以纯粹的统计和纯粹的深度学习方法优于预测,并定量与这些预测(预测间隔)的相关不确定性。一个示例是指数平滑复发性神经网络(ES-RNN),统计预测模型和经常性神经网络变体之间的混合。 ES-RNN在Makridakis-4预测竞争中实现了9.4 \%的绝对错误。这种改进和类似的混合模型的表现主要是仅在单变量数据集上展示。将混合预测方法应用于多变量数据的困难包括($ i $)的高参数调整所涉及的高计算成本,用于与数据中固有的自动关联相关的模型(II $)挑战,以及( $ iii $)在可能难以捕获的协变量之间的复杂依赖(交叉相关)。本文介绍了多变量指数平滑的长短短期记忆(MES-LSTM),对ES-RNN的广义多元扩展,克服了这些挑战。 MES-LSTM利用了矢量化实现。我们在2019年(Covid-19)发病率数据集的几种聚集冠状病毒病中测试MES-LSTM,并发现我们的混合方法在预测准确性和预测间隔建设下对纯统计和深度学习方法进行了一致的,显着改善。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
使用变压器的深度学习最近在许多重要领域取得了很大的成功,例如自然语言处理,计算机视觉,异常检测和推荐系统等。在变压器的几种优点中,对于时间序列预测,捕获远程时间依赖性和相互作用的能力是可取的,从而导致其在各种时间序列应用中的进步。在本文中,我们为非平稳时间序列构建了变压器模型。这个问题具有挑战性,但至关重要。我们为基于小波的变压器编码器体系结构提供了一个新颖的单变量时间序列表示学习框架,并将其称为W-Transformer。所提出的W-Transformer使用最大重叠离散小波转换(MODWT)到时间序列数据,并在分解数据集上构建本地变压器,以生动地捕获时间序列中的非机构性和远程非线性依赖性。在来自各个领域的几个公共基准时间序列数据集和具有不同特征的几个公开基准时间序列数据集上评估我们的框架,我们证明它的平均表现明显优于短期和长期预测的基线预报器,即使是由包含的数据集组成的数据集只有几百个培训样本。
translated by 谷歌翻译
自回旋运动平均值(ARMA)模型是经典的,可以说是模型时间序列数据的最多研究的方法之一。它具有引人入胜的理论特性,并在从业者中广泛使用。最近的深度学习方法普及了经常性神经网络(RNN),尤其是长期记忆(LSTM)细胞,这些细胞已成为神经时间序列建模中最佳性能和最常见的构件之一。虽然对具有长期效果的时间序列数据或序列有利,但复杂的RNN细胞并不总是必须的,有时甚至可能不如更简单的复发方法。在这项工作中,我们介绍了ARMA细胞,这是一种在神经网络中的时间序列建模的更简单,模块化和有效的方法。该单元可以用于存在复发结构的任何神经网络体系结构中,并自然地使用矢量自动进程处理多元时间序列。我们还引入了Convarma细胞作为空间相关时间序列的自然继任者。我们的实验表明,所提出的方法在性能方面与流行替代方案具有竞争力,同时由于其简单性而变得更加强大和引人注目。
translated by 谷歌翻译
与单变量预测方法相比,在一组多个时间序列中培训的全球预测模型(GFM)在许多预测竞赛和现实世界应用方面表现出优越的结果。 ETS和Arima等统计预测模型的普及的一个方面是它们相对简单和可解释性(就相关的滞后,趋势,季节性等),而GFM通常缺乏可解释性,特别是对特定时间序列。这减少了基于预测的决策时对利益相关者的信任和信心,而不是能够理解预测。为了减轻这个问题,在这项工作中,我们提出了一种新颖的本地模型 - 不可知论解释方法来解释GFM的预测。我们培训更简单的单变量代理模型,这些模型被认为是通过自动启动或直截了当地作为时间序列的一步的全局黑匣子模型预测所获得的邻域内的邻域内的样本的可解释(例如,ETS)。需要解释哪些。之后,我们评估了对全球模型在定性和定量方面的预测的解释,例如准确性,保真度,稳定性和可理性,并且能够展示我们方法的好处。
translated by 谷歌翻译
在这项工作中,我们提出了使用量子缩放(MQ-DRN-S)的分位数回归和扩张的经常性神经网络,并将其应用于库存管理任务。该模型在统计基准(具有外源性变量,QAR-X)的统计基准(分位式自回归模型,QAR-X)而言,该模型更好地表现出更好的性能,而不是在没有时间缩放的MQ-DRNN的情况下更好。以上一系列10,000次销售的elllobo销售超过53周的地平线,每周使用滚动窗口为7天。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
粒子加速器是复杂的设施,可产生大量的结构化数据,并具有明确的优化目标以及精确定义的控制要求。因此,它们自然适合数据驱动的研究方法。来自传感器和监视加速器形式的多元时间序列的数据。在加速器控制和诊断方面,快速的先发制人方法是高度首选的,数据驱动的时间序列预测方法的应用尤其有希望。这篇综述提出了时间序列预测问题,并总结了现有模型,并在各个科学领域的应用中进行了应用。引入了粒子加速器领域中的几次和将来的尝试。预测到粒子加速器的时间序列的应用显示出令人鼓舞的结果和更广泛使用的希望,现有的问题(例如数据一致性和兼容性)已开始解决。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
Platelet products are both expensive and have very short shelf lives. As usage rates for platelets are highly variable, the effective management of platelet demand and supply is very important yet challenging. The primary goal of this paper is to present an efficient forecasting model for platelet demand at Canadian Blood Services (CBS). To accomplish this goal, four different demand forecasting methods, ARIMA (Auto Regressive Moving Average), Prophet, lasso regression (least absolute shrinkage and selection operator) and LSTM (Long Short-Term Memory) networks are utilized and evaluated. We use a large clinical dataset for a centralized blood distribution centre for four hospitals in Hamilton, Ontario, spanning from 2010 to 2018 and consisting of daily platelet transfusions along with information such as the product specifications, the recipients' characteristics, and the recipients' laboratory test results. This study is the first to utilize different methods from statistical time series models to data-driven regression and a machine learning technique for platelet transfusion using clinical predictors and with different amounts of data. We find that the multivariate approaches have the highest accuracy in general, however, if sufficient data are available, a simpler time series approach such as ARIMA appears to be sufficient. We also comment on the approach to choose clinical indicators (inputs) for the multivariate models.
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
在许多应用和研究领域,时间序列的概率预测是重要的事情。为了从概率预测中得出结论,我们必须确保用于近似真实预测分布的模型类足够表达。然而,模型本身的特征,例如其不确定性或特征结果关系并不重要。本文提出了自回旋转换模型(ATM),该模型类是受各种研究方向启发的模型类别,使用半参数分布假设和可解释的模型规范结合表达性分布预测。我们在理论上和通过几个模拟和真实的预测数据集上通过经验评估来证明ATM的属性。
translated by 谷歌翻译
中期地平线(几个月到一年)功耗预测是能源部门的主要挑战,特别是当考虑概率预测时。我们提出了一种新的建模方法,该方法包含趋势,季节性和天气条件,作为具有自回归特征的浅神经网络中的解析变量。我们在将其应用于新英格兰的日常电力消耗的一年试验集上获得优异的效果预测。一方面已经验证了实现的电力消耗概率预测的质量,将结果与其他标准进行比较密度预测模型,另一方面,考虑在能量扇区中经常使用的措施,作为弹球损失和CI逆退。
translated by 谷歌翻译
在时间序列预测的背景下,常用做法是评估多种方法,并选择其中一种方法或用于产生最佳预测的合奏。然而,在多种方法中选择不同的集合仍然是当方法的数量增加时,仍然是经历组合爆炸的具有挑战性的任务。在需求预测或收入预测的背景下,这一挑战在大量时间序列以及由于不断变化的业务环境而获得的有限的历史数据点,进一步加剧。虽然深入学习预测方法旨在同时预测大量时间序列,但由于有限的历史可用,可能不会产生理想的结果,它们变得挑战。我们提出了一种通过在使用交叉验证的潜在时间序列上组合低级时间矩阵分解和最佳模型选择来预测短高维时间序列数据的框架。我们展示预测潜在因子与直接应用于时间序列的不同UNI变化模型相比,潜在因子导致显着的性能提升。在M4月数据集的截断版本上验证了性能,其中包含来自来自多个域的时间序列数据,显示该方法的一般适用性。此外,由于在将预测方法直接应用于高维数据集时通常是不切实际的潜在因子而言,可以将未来的分析师视图纳入未来的分析师观。
translated by 谷歌翻译
在称为RNN(p)的几个时间滞后的复发神经网络是自然回归ARX(P)模型的自然概括。当不同的时间尺度会影响给定现象时,它是一种强大的预测工具,因为它发生在能源领域,每小时,每日,每周和每年的互动并存。具有成本效益的BPTT是RNN的学习算法的行业标准。我们证明,当训练RNN(P)模型时,其他学习算法在时间和空间复杂性方面都更加有效。我们还介绍了一种新的学习算法,即树木重组的重组学习,该算法利用了展开网络的树表示,并且似乎更有效。我们提出了RNN(P)模型的应用,以在每小时规模上进行功耗预测:实验结果证明了所提出的算法的效率以及所选模型在点和能源消耗的概率预测中实现的出色预测准确性。
translated by 谷歌翻译
在时间序列预测的各种软计算方法中,模糊认知地图(FCM)已经显示出显着的结果作为模拟和分析复杂系统动态的工具。 FCM具有与经常性神经网络的相似之处,可以被分类为神经模糊方法。换句话说,FCMS是模糊逻辑,神经网络和专家系统方面的混合,它作为模拟和研究复杂系统的动态行为的强大工具。最有趣的特征是知识解释性,动态特征和学习能力。本调查纸的目标主要是在文献中提出的最相关和最近的基于FCCM的时间序列预测模型概述。此外,本文认为介绍FCM模型和学习方法的基础。此外,该调查提供了一些旨在提高FCM的能力的一些想法,以便在处理非稳定性数据和可扩展性问题等现实实验中涵盖一些挑战。此外,具有快速学习算法的FCMS是该领域的主要问题之一。
translated by 谷歌翻译